
On the Lack of Robustness of Binary Function Similarity Systems

Gianluca Capozzi∗, Tong Tang†, Jie Wan†, Ziqi Yang†§1,
Daniele Cono D’Elia∗, Giuseppe Antonio Di Luna∗, Lorenzo Cavallaro‡, Leonardo Querzoni∗

∗ Sapienza University of Rome, {capozzi, delia, diluna, querzoni}@diag.uniroma1.it
†The State Key Laboratory of Blockchain and Data Security, Zhejiang University, {tong.tang, wanjie, yangziqi}@zju.edu.cn

§Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security
‡ University College London, l.cavallaro@ucl.ac.uk

Abstract—Binary function similarity, which often relies on
learning-based algorithms to identify what functions in a
pool are most similar to a given query function, is a sought-
after topic in different communities, including machine
learning, software engineering, and security. Its importance
stems from the impact it has in facilitating several crucial
tasks, from reverse engineering and malware analysis to
automated vulnerability detection. Whereas recent work cast
light around performance on this long-studied problem, the
research landscape remains largely lackluster in understand-
ing the resiliency of the state-of-the-art machine learning
models against adversarial attacks. As security requires
to reason about adversaries, in this work we assess the
robustness of such models through a simple yet effective
black-box greedy attack, which modifies the topology and
the content of the control flow of the attacked functions. We
demonstrate that this attack is successful in compromising
all the models, achieving average attack success rates of
57.06% and 95.81% depending on the problem settings
(targeted and untargeted attacks). Our findings are insight-
ful: top performance on clean data does not necessarily
relate to top robustness properties, which explicitly highlights
performance-robustness trade-offs one should consider when
deploying such models, calling for further research.

Index Terms—Adversarial machine learning, binary analysis,
binary function similarity

1. Introduction

A fruitful and long-standing research trend involves
applying Deep Neural Networks (DNNs) to solve bi-
nary analysis problems. These solutions typically pro-
vide end-to-end capabilities for handling complex tasks
across entire binaries (prototypical examples include mal-
ware/benign classification solutions). More recently, the
focus has narrowed to specific binary analysis challenges
that could immediately assist a reverse engineer, such as
decompiling binary functions [8], identifying the signature
and boundaries of a function [2], [36], and detecting the
toolchain used to generate a specific binary [32].

The binary function similarity problem. Among these
tasks, one that has been predominately studied involves

1Corresponding author.

identifying when two binary functions are obtained from
the same source code compiled with different compilers
or optimization flags. This is known in the literature as
the binary function similarity problem [1], [13], [18], [23].
This problem plays a key role in several security-sensitive
scenarios [31], [33], [46], and is especially effective in
detecting previously analyzed functions using a reference
database. This includes challenges such as identifying
known library functions in statically linked stripped bi-
naries, recognizing specific malware functionalities (e.g.,
by recognizing a particular crypto routine, or clustering
malware into families and lineage trees), detecting known
vulnerabilities in binaries and firmware, and identifying
copyright infringement cases in compiled binaries.

All binary function similarity models take a pair of
functions as input and output a similarity score, that
ranges from a minimum to a maximum value. Even if the
models are trained using the strict definition of similarity
described above, it has been observed that high similarity
scores are also given to functions derived from source
codes that are different but semantically similar. This
characteristic is indeed desirable as it can be used to
cluster semantically similar functions.

The gold standard for testing binary function similarity
solutions uses them in the function search problem [16],
[40], [44], where a query function fQ is used to order
a pool of functions P according to their similarity score
from fQ, where P can contain one or more functions fv
similar to fQ. The problem is correctly solved when fv is
among the top-K similar functions in the order induced
by the similarity score.

Given its central importance, the binary function sim-
ilarity problem has become a hot topic of research with
various solutions, mainly based on DNNs, proposed in the
last four years [3], [16], [17], [28], [29], [33], [38], [40],
[41], [44], [46]. To bring order to the plethora of proposed
systems tested with varying performance measures, a 2022
paper by Marcelli et al. [31] evaluated several solutions
using a common dataset. This step represented the first
attempt to systematize a still-growing and fascinating field
(since 2022, other binary similarity models have been
proposed [40], [44]).

The missing piece of the puzzle: robustness. While [31]
systematically evaluates many different systems under

several aspects, it never assesses the robustness of their
underlying models.

A key weakness of machine learning solutions, es-
pecially those based on DNNs, is their performance
when processing adversarial examples [48]. It is well-
known that systems classifying media content (images,
text, video, or audio) can be fooled by crafted examples
obtained by modifying a benign one. Although the litera-
ture on adversarial examples is well-established for these
models [5], [10], [20], [22], [26], its investigation into
systems that analyze binaries is still in the early stages,
with the majority of works focused on fooling malware
classifiers [14], [30], [39].

At the current state, it is unclear what would be the
resiliency of the binary similarity models benchmarked
in [31] against adversarial examples. Intuitively, the ease
of generating such examples for an adversary directly im-
pacts the reliability of these systems. Hence, an extensive
evaluation of their robustness is necessary to expose any
inherent weaknesses undermining their practical value.

Our robustness evaluation. In this paper, we aim to close
this gap by investigating the robustness of binary function
similarity models. We adopt a black-box approach, moti-
vated by the objective of testing the models against the
weakest possible adversary. In keeping with this spirit, we
have decided to use a basic framework for our attack—a
greedy approach—which we have extended with a few
refinements: a black-box importance mechanism to decide
which part of the function to modify, and an embedding-
based mechanism for sequences of instructions to guide
the content of certain transformations.

In this paper, we consider an attacker aiming to com-
promise a binary function similarity system used for func-
tion search by reducing its ability to search for variants
of a specific query function that they are altering. The
adversary can execute targeted and untargeted attacks. In
a targeted attack, given a query function fQ and a set V
of functions that are semantically similar to each other,
the attacker seeks to generate from fQ a semantically
equivalent function fadv maximizing its similarity with the
functions in V . The untargeted attack is dual; here, given
a query function fQ and a set V of functions semantically
equivalent to fQ, the attacker seeks to generate from fQ
a function fadv semantically similar to fQ that minimizes
the similarity with the functions in V .

We selected eight models, chosen from those used
in [31] and other more recent and promising ones, based
on criteria of scalability and diversity. That is, the models
must be scalable and thus usable in real-world settings,
and they must cover a broad spectrum of potential charac-
teristics of similarity models. These include, for example,
manual and automatic features, different neural archi-
tectures (i.e., RNNs, feedforwards, and GNNs), models
trained with and without execution information and with
or without obfuscated samples. The diversity of models
ensured during the selection process makes the evaluation
in our paper generalizable, as the trends observed in our
evaluation are likely to hold for other models that share
the structure of some of those we tested.

The selected models have been tested against targeted
and untargeted attacks using the black-box methodology
described above, and their robustness has been evaluated

according to the primary metric of the Attack Success
Rate (ASR).

1.1. Contributions

In this paper, we assess the robustness of eight bi-
nary function similarity models—Gemini [46], GMN [29],
ZEEK [41], BinFinder [40], SAFE [33], jTrans [44],
Trex [38], and PalmTree [28]— using a simple black-
box greedy attack. This attack leverages four semantics-
preserving transformations that alter the topology and the
content of the control flow graph of the attacked query
function.

This paper proposes the following contributions:
• Robustness analysis. We assess the robustness of

the examined models against targeted and untargeted
attacks by using pools of various sizes and different
values for K, which represent the number of func-
tions returned by the model that are more similar
to the query function fQ. We observed a significant
difference in the Attack Success Rate (ASR) with
targeted attacks being successful in about 57.06% of
cases, whereas untargeted attacks in 95.81%.

• Transferability. We investigated whether an adversar-
ial example crafted for one model could be used
to attack another model. Our analysis shows that
targeted attacks do not transfer well. On the other
end, untargeted attacks generally transfer, with an
average ASR of 62.11%.

• Common model behaviors. We performed an in-
depth analysis on the structure of the adversarial ex-
amples, to check whether they reveal useful insights
about the attacked models.

• Our artifacts are available at: https://github.com/
Sap4Sec/BCSD Robustness.git

2. Threat Model

This work focuses on assessing the robustness of
binary function similarity systems at inference time (i.e.,
we do not investigate their robustness against poisoning
attacks). To this end, we assume a black-box attacker [6],
[39], with no access to the target model or training data.
The attacker can perform an unlimited number of queries
to observe the similarity value produced by the model.

We emphasize that if the model does not provide the
similarity score but only categorical outputs, the attack
scenario shifts to a gray-box setting. However, the at-
tacker’s knowledge remains minimal, as they only need
the similarity score to execute the attack effectively.

2.1. Targeted and Untargeted Attacks

Let sim be a similarity function that takes as input
two functions and returns a real number, the similarity
score between them. We define two binary functions as
semantically equivalent if they are two implementations
of the same abstract functionality. A set of functions is a
set of variants if all the functions are compiled from the
same source code.

An intriguing challenge within binary function similar-
ity systems consists of the One-to-Many (OM) task [16],

https://github.com/Sap4Sec/BCSD_Robustness.git
https://github.com/Sap4Sec/BCSD_Robustness.git

<latexit sha1_base64="6IQpX2edGo40jCGEi75iTiqhrdQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWSjCCgj0VAmgjykxIrOl0045fzQ3RoURfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60CmvrG5tbxe3Szu7e/kH58KhjwlgLbItQhbrncYNKBtgmSQp7kUbuewq73vQ69bsPqI0MgzuaRej6fBLIsRScEul2PGwNyxW7Zmdgq8TJSQVyNIflr8EoFLGPAQnFjek7dkTunGuSQuGiNIgNRlxM+QT7CQ24j8adZ1EX7Cw2nEIWoWZSsUzE3xtz7hsz871k0ud0b5a9VPzP68c0vnLnMohiwkCkh0gqzA4ZoWXSAbKR1EjE0+TIZMAE15wItWRciESMk1JKSR/O8verpHNecy5q9Va90qjmzRThBE6hCg5cQgNuoAltEDCBJ3iGF+vRerXerPef0YKV7xzDH1gf38MBkiI=</latexit>

fQ

<latexit sha1_base64="6IQpX2edGo40jCGEi75iTiqhrdQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWSjCCgj0VAmgjykxIrOl0045fzQ3RoURfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60CmvrG5tbxe3Szu7e/kH58KhjwlgLbItQhbrncYNKBtgmSQp7kUbuewq73vQ69bsPqI0MgzuaRej6fBLIsRScEul2PGwNyxW7Zmdgq8TJSQVyNIflr8EoFLGPAQnFjek7dkTunGuSQuGiNIgNRlxM+QT7CQ24j8adZ1EX7Cw2nEIWoWZSsUzE3xtz7hsz871k0ud0b5a9VPzP68c0vnLnMohiwkCkh0gqzA4ZoWXSAbKR1EjE0+TIZMAE15wItWRciESMk1JKSR/O8verpHNecy5q9Va90qjmzRThBE6hCg5cQgNuoAltEDCBJ3iGF+vRerXerPef0YKV7xzDH1gf38MBkiI=</latexit>

fQ

<latexit sha1_base64="C2TF6ZmAbywMrJanlErkY3PrZrg=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoMQL2E3iHoMePEYwTwgCaF30olDZh/M9IphCfgVXvXkTbz6Kx78F3fXPWhinYqqbrq63FBJQ7b9aRVWVtfWN4qbpa3tnd298v5B2wSRFtgSgQp01wWDSvrYIkkKu6FG8FyFHXd6lfqde9RGBv4tzUIceDDx5VgKoETq9wkfyB3HVTidD8sVu2Zn4MvEyUmF5WgOy1/9USAiD30SCozpOXZIgxg0SaFwXupHBkMQU5hgL6E+eGgGcZZ5zk8iAxTwEDWXimci/t6IwTNm5rnJpAd0Zxa9VPzP60U0vhzE0g8jQl+kh0gqzA4ZoWVSBvKR1EgEaXLk0ucCNBChlhyESMQoaaeU9OEsfr9M2vWac147u6lXGtW8mSI7Ysesyhx2wRrsmjVZiwkWsif2zF6sR+vVerPef0YLVr5zyP7A+vgGmNOV9w==</latexit>

(a)

<latexit sha1_base64="7CmzUNtHKV7bPDVLdisToEYjy3A=">AAAB/nicbVC7TsNAEDyHVwivACXNiQgpNJEdIaCMREMZJPKQYis6XzbhlLN9ulsjIisSX0ELFR2i5Vco+Bds4wISphrN7Gpnx1dSGLTtT6u0srq2vlHerGxt7+zuVfcPuiaKNYcOj2Sk+z4zIEUIHRQooa80sMCX0POnV5nfuwdtRBTe4kyBF7BJKMaCM0wl10V4QH+c1P3T+bBasxt2DrpMnILUSIH2sPrljiIeBxAil8yYgWMr9BKmUXAJ84obG1CMT9kEBikNWQDGS/LMc3oSG4YRVaCpkDQX4fdGwgJjZoGfTgYM78yil4n/eYMYx5deIkIVI4Q8O4RCQn7IcC3SMoCOhAZEliUHKkLKmWaIoAVlnKdinLZTSftwFr9fJt1mwzlvnN00a6160UyZHJFjUicOuSAtck3apEM4UeSJPJMX69F6td6s95/RklXsHJI/sD6+AZpklfg=</latexit>

(b)
<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

<latexit sha1_base64="CpBfdh/eZmDuNabrM37MrXtmfYA=">AAACBHicbVC7SgNBFJ2Nrxhfq5Y2g0FIEcKuBLUM2Ag2EcwDkmWZndzEIbMPZu4GwpLWr7DVyk5s/Q8L/8XddQtNPNXhnHu55x4vkkKjZX0apbX1jc2t8nZlZ3dv/8A8POrqMFYcOjyUoep7TIMUAXRQoIR+pID5noSeN73O/N4MlBZhcI/zCByfTQIxFpxhKrmmOXbtOh3yUYi6TsfurWtWrYaVg64SuyBVUqDtml/DUchjHwLkkmk9sK0InYQpFFzCojKMNUSMT9kEBikNmA/aSfLkC3oWa4YhjUBRIWkuwu+NhPlaz30vnfQZPuhlLxP/8wYxjq+cRARRjBDw7BAKCfkhzZVIKwE6EgoQWZYcqAgoZ4ohghKUcZ6KcdpRJe3DXv5+lXTPG/ZFo3nXrLZqRTNlckJOSY3Y5JK0yA1pkw7hZEaeyDN5MR6NV+PNeP8ZLRnFzjH5A+PjG3+PltY=</latexit>

f1, · · · , fK

<latexit sha1_base64="aq6b1XUk7Emj6Jmg69y3al31H1M=">AAACKnicbZDLTgJBEEV7fCK+UJduOhITFoTMGIIuSdyQuMFEHgngpKcpsEPPI901JGTCn/gJfoVbXbkjxp0f4sw4CwFrdXNuVarqOoEUGk1zYWxsbm3v7Ob28vsHh0fHhZPTtvZDxaHFfemrrsM0SOFBCwVK6AYKmOtI6DiT28TvTEFp4XsPOAtg4LKxJ0aCM4yRXaiNbKtM+3zooy7TkR1N54+RNV9DjSV0ZxeKZsVMi64LKxNFklXTLnz1hz4PXfCQS6Z1zzIDHERMoeAS5vl+qCFgfMLG0Iulx1zQgyj9b04vQ83QpwEoKiRNIfydiJir9cx14k6X4ZNe9RL4n9cLcXQziIQXhAgeTxahkJAu0lyJODigQ6EAkSWXAxUe5UwxRFCCMs5jGMZJ5uM8rNXv10X7qmLVKtX7arFeypLJkXNyQUrEItekThqkSVqEk2fySt7Iu/FifBgL4/O3dcPIZs7IUhnfPyPupf8=</latexit>

f1, · · · , f1
v , · · · , fH

v , · · · , fK

<latexit sha1_base64="0HvjeAeH/C4j4bb9nsm8Runwbtg=">AAAB+XicbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAGiTykxIrWl0045fzQ3TpSZOUjaKGiQ7R8DQX/gm1cQMJUo5ld7ex4kZKGbPvTKm1sbm3vlHcre/sHh0fV45OuCWMtsCNCFeq+BwaVDLBDkhT2I43gewp73uw283tz1EaGwQMtInR9mAZyIgVQKvUmowTG8+WoWrMbdg6+TpyC1FiB9qj6NRyHIvYxIKHAmIFjR+QmoEkKhcvKMDYYgZjBFAcpDcBH4yZ53CW/iA1QyCPUXCqei/h7IwHfmIXvpZM+0KNZ9TLxP28Q0+TGTWQQxYSByA6RVJgfMkLLtAfkY6mRCLLkyGXABWggQi05CJGKcVpMJe3DWf1+nXQvG85Vo3nfrLXqRTNldsbOWZ057Jq12B1rsw4TbMae2DN7sRLr1Xqz3n9GS1axc8r+wPr4Bk20lCw=</latexit>

fadv

<latexit sha1_base64="G8przGiG3L1JwughidQZ2Sr5wiQ=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g0FIEcKuBLURAjYpI5gHJGuYndzEIbMPZu4GwrKtn+BX2GplJ7b2Fv6Lm7iCJp7qcM693HuOG0qh0bI+jNzK6tr6Rn6zsLW9s7tn7h+0dBApDk0eyEB1XKZBCh+aKFBCJ1TAPFdC2x1fzfz2BJQWgX+D0xAcj418MRScYSr1Tdqil3TYjyfJbWwnZdrjgwB1+UeqJ32zaFWsOegysTNSJBkaffOzNwh45IGPXDKtu7YVohMzhYJLSAq9SEPI+JiNoJtSn3mgnXieJKEnkWYY0BAUFZLORfi9ETNP66nnppMewzu96M3E/7xuhMMLJxZ+GCH4fHYIhYT5Ic2VSCsCOhAKENnsc6DCp5wphghKUMZ5KkZpZ4W0D3sx/TJpnVbss0r1ulqslbJm8uSIHJMSsck5qZE6aZAm4eSePJIn8mw8GC/Gq/H2PZozsp1D8gfG+xc4kJ3O</latexit>

V = f1
v , · · · , fH

v

<latexit sha1_base64="dXknU4L22rXZOSXD77nUvyfeDYI=">AAAB/nicbVDLSsNAFJ3UV62vqks3g0XoqiRF1GVREJcV7QOaUibT2zp0kgwzN2IJBb/Cra7ciVt/xYX/YhKz0NazOpxzL/fc4ykpDNr2p1VYWl5ZXSuulzY2t7Z3yrt7bRNGmkOLhzLUXY8ZkCKAFgqU0FUamO9J6HiTi9Tv3IM2Igxucaqg77NxIEaCM0wk10V4QG8Un1/ezAblil2zM9BF4uSkQnI0B+UvdxjyyIcAuWTG9BxbYT9mGgWXMCu5kQHF+ISNoZfQgPlg+nGWeUaPIsMwpAo0FZJmIvzeiJlvzNT3kkmf4Z2Z91LxP68X4eisH4tARQgBTw+hkJAdMlyLpAygQ6EBkaXJgYqAcqYZImhBGeeJGCXtlJI+nPnvF0m7XnNOasfX9UqjmjdTJAfkkFSJQ05Jg1yRJmkRThR5Is/kxXq0Xq036/1ntGDlO/vkD6yPb9j8liA=</latexit>

BFS

<latexit sha1_base64="dXknU4L22rXZOSXD77nUvyfeDYI=">AAAB/nicbVDLSsNAFJ3UV62vqks3g0XoqiRF1GVREJcV7QOaUibT2zp0kgwzN2IJBb/Cra7ciVt/xYX/YhKz0NazOpxzL/fc4ykpDNr2p1VYWl5ZXSuulzY2t7Z3yrt7bRNGmkOLhzLUXY8ZkCKAFgqU0FUamO9J6HiTi9Tv3IM2Igxucaqg77NxIEaCM0wk10V4QG8Un1/ezAblil2zM9BF4uSkQnI0B+UvdxjyyIcAuWTG9BxbYT9mGgWXMCu5kQHF+ISNoZfQgPlg+nGWeUaPIsMwpAo0FZJmIvzeiJlvzNT3kkmf4Z2Z91LxP68X4eisH4tARQgBTw+hkJAdMlyLpAygQ6EBkaXJgYqAcqYZImhBGeeJGCXtlJI+nPnvF0m7XnNOasfX9UqjmjdTJAfkkFSJQ05Jg1yRJmkRThR5Is/kxXq0Xq036/1ntGDlO/vkD6yPb9j8liA=</latexit>

BFS

<latexit sha1_base64="LWRMXr2rG5dHdln5SNYmf3R+69Q=">AAAB83icbVA9TwJBFNzDL8Qv1NJmIzGhIneGqCWJjSUkgiRwMXvLAzfs7V1235oQwi+w1crO2PqDLPwv7p1XKDjVZGZe3nsTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD496JrGaQ5cnMtH9iBmQQkEXBUropxpYHEm4i6bXmX/3CNqIRN3iLIUwZhMlxoIzdFKnfV+t+Q0/B10lQUFqpIDLfw1HCbcxKOSSGTMI/BTDOdMouIRFZWgNpIxP2QQGjioWgwnn+aELemYNw4SmoKmQNBfh98ScxcbM4sglY4YPZtnLxP+8gcXxVTgXKrUIimeLUEjIFxmuhWsA6EhoQGTZ5UCFopxphghaUMa5E62rpOL6CJa/XyW980Zw0Wh2mrVWvWimTE7IKamTgFySFrkhbdIlnAB5Is/kxbPeq/fmvf9ES14xc0z+wPv4BkNNkUg=</latexit>

P
<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

<latexit sha1_base64="LWRMXr2rG5dHdln5SNYmf3R+69Q=">AAAB83icbVA9TwJBFNzDL8Qv1NJmIzGhIneGqCWJjSUkgiRwMXvLAzfs7V1235oQwi+w1crO2PqDLPwv7p1XKDjVZGZe3nsTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD496JrGaQ5cnMtH9iBmQQkEXBUropxpYHEm4i6bXmX/3CNqIRN3iLIUwZhMlxoIzdFKnfV+t+Q0/B10lQUFqpIDLfw1HCbcxKOSSGTMI/BTDOdMouIRFZWgNpIxP2QQGjioWgwnn+aELemYNw4SmoKmQNBfh98ScxcbM4sglY4YPZtnLxP+8gcXxVTgXKrUIimeLUEjIFxmuhWsA6EhoQGTZ5UCFopxphghaUMa5E62rpOL6CJa/XyW980Zw0Wh2mrVWvWimTE7IKamTgFySFrkhbdIlnAB5Is/kxbPeq/fmvf9ES14xc0z+wPv4BkNNkUg=</latexit>

P
<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

Figure 1: Targeted attack. (a) Initially, the target variants
V = {f1

v , · · · , fH
v } are not among the top-K most similar

functions to fQ in the pool P . (b) After the attack, using
fadv as query brings all variants in V into the top-K.

<latexit sha1_base64="6IQpX2edGo40jCGEi75iTiqhrdQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWSjCCgj0VAmgjykxIrOl0045fzQ3RoURfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60CmvrG5tbxe3Szu7e/kH58KhjwlgLbItQhbrncYNKBtgmSQp7kUbuewq73vQ69bsPqI0MgzuaRej6fBLIsRScEul2PGwNyxW7Zmdgq8TJSQVyNIflr8EoFLGPAQnFjek7dkTunGuSQuGiNIgNRlxM+QT7CQ24j8adZ1EX7Cw2nEIWoWZSsUzE3xtz7hsz871k0ud0b5a9VPzP68c0vnLnMohiwkCkh0gqzA4ZoWXSAbKR1EjE0+TIZMAE15wItWRciESMk1JKSR/O8verpHNecy5q9Va90qjmzRThBE6hCg5cQgNuoAltEDCBJ3iGF+vRerXerPef0YKV7xzDH1gf38MBkiI=</latexit>

fQ

<latexit sha1_base64="C2TF6ZmAbywMrJanlErkY3PrZrg=">AAAB/nicbVDLSgNBEJyNrxhfUY9eBoMQL2E3iHoMePEYwTwgCaF30olDZh/M9IphCfgVXvXkTbz6Kx78F3fXPWhinYqqbrq63FBJQ7b9aRVWVtfWN4qbpa3tnd298v5B2wSRFtgSgQp01wWDSvrYIkkKu6FG8FyFHXd6lfqde9RGBv4tzUIceDDx5VgKoETq9wkfyB3HVTidD8sVu2Zn4MvEyUmF5WgOy1/9USAiD30SCozpOXZIgxg0SaFwXupHBkMQU5hgL6E+eGgGcZZ5zk8iAxTwEDWXimci/t6IwTNm5rnJpAd0Zxa9VPzP60U0vhzE0g8jQl+kh0gqzA4ZoWVSBvKR1EgEaXLk0ucCNBChlhyESMQoaaeU9OEsfr9M2vWac147u6lXGtW8mSI7Ysesyhx2wRrsmjVZiwkWsif2zF6sR+vVerPef0YLVr5zyP7A+vgGmNOV9w==</latexit>

(a)
<latexit sha1_base64="CBj9+VivD3qeXBI2sxSXenFGWxU=">AAACKnicbZDLTgJBEEV78IX4GnXppiMxYUHIjCHoksQNiRtI5JEATnqaAjv0PNJdQ0Im/Imf4Fe41ZU7Ytz5IQ44CwFrdXNuVarquqEUGi1rbmS2tnd297L7uYPDo+MT8/SspYNIcWjyQAaq4zINUvjQRIESOqEC5rkS2u74buG3J6C0CPwHnIbQ99jIF0PBGSbIMStDp1GkPT4IUBfp0Ikns8fYnm2g2gq6d8y8VbKWRTeFnYo8SavumF+9QcAjD3zkkmndta0Q+zFTKLiEWa4XaQgZH7MRdBPpMw90P17+N6NXkWYY0BAUFZIuIfydiJmn9dRzk06P4ZNe9xbwP68b4fC2Hws/jBB8vliEQsJykeZKJMEBHQgFiGxxOVDhU84UQwQlKOM8gVGSZC7Jw17/flO0rkt2pVRulPPVQppMllyQS1IgNrkhVVIjddIknDyTV/JG3o0X48OYG5+/rRkjnTknK2V8/wBcLqYf</latexit>

fQ, · · · , f1
v , · · · , fH

v , · · · , fK

<latexit sha1_base64="6IQpX2edGo40jCGEi75iTiqhrdQ=">AAAB9XicbVC7TsNAEFyHVwivACXNiQgpVWSjCCgj0VAmgjykxIrOl0045fzQ3RoURfkEWqjoEC3fQ8G/YBsXkDDVaGZXOztepKQh2/60CmvrG5tbxe3Szu7e/kH58KhjwlgLbItQhbrncYNKBtgmSQp7kUbuewq73vQ69bsPqI0MgzuaRej6fBLIsRScEul2PGwNyxW7Zmdgq8TJSQVyNIflr8EoFLGPAQnFjek7dkTunGuSQuGiNIgNRlxM+QT7CQ24j8adZ1EX7Cw2nEIWoWZSsUzE3xtz7hsz871k0ud0b5a9VPzP68c0vnLnMohiwkCkh0gqzA4ZoWXSAbKR1EjE0+TIZMAE15wItWRciESMk1JKSR/O8verpHNecy5q9Va90qjmzRThBE6hCg5cQgNuoAltEDCBJ3iGF+vRerXerPef0YKV7xzDH1gf38MBkiI=</latexit>

fQ

<latexit sha1_base64="I7a/YP4I6SrxofUnPTb5oWRyHZc=">AAACCHicbVC5TsNAEF1zhnCZo6NZESGliCIbRUAZiQaJJkjkkBLLWm8mYZX1od0xUrD8A3wFLVR0iJa/oOBfsIMLSHjVm/dmNDPPi6TQaFmfxtLyyuraemmjvLm1vbNr7u13dBgrDm0eylD1PKZBigDaKFBCL1LAfE9C15tc5n73HpQWYXCL0wgcn40DMRKcYSa55uHITey0Rgd8GKKu0ay8Tl2zYtWtGegisQtSIQVarvk1GIY89iFALpnWfduK0EmYQsElpOVBrCFifMLG0M9owHzQTjK7PqUnsWYY0ggUFZLORPg9kTBf66nvZZ0+wzs97+Xif14/xtGFk4ggihECni9CIWG2SHMlsliADoUCRJZfDlQElDPFEEEJyjjPxDjLqZzlYc9/v0g6p3X7rN64aVSa1SKZEjkix6RKbHJOmuSKtEibcPJAnsgzeTEejVfjzXj/aV0yipkD8gfGxzc1qZju</latexit>

f1, · · · , fK

<latexit sha1_base64="7CmzUNtHKV7bPDVLdisToEYjy3A=">AAAB/nicbVC7TsNAEDyHVwivACXNiQgpNJEdIaCMREMZJPKQYis6XzbhlLN9ulsjIisSX0ELFR2i5Vco+Bds4wISphrN7Gpnx1dSGLTtT6u0srq2vlHerGxt7+zuVfcPuiaKNYcOj2Sk+z4zIEUIHRQooa80sMCX0POnV5nfuwdtRBTe4kyBF7BJKMaCM0wl10V4QH+c1P3T+bBasxt2DrpMnILUSIH2sPrljiIeBxAil8yYgWMr9BKmUXAJ84obG1CMT9kEBikNWQDGS/LMc3oSG4YRVaCpkDQX4fdGwgJjZoGfTgYM78yil4n/eYMYx5deIkIVI4Q8O4RCQn7IcC3SMoCOhAZEliUHKkLKmWaIoAVlnKdinLZTSftwFr9fJt1mwzlvnN00a6160UyZHJFjUicOuSAtck3apEM4UeSJPJMX69F6td6s95/RklXsHJI/sD6+AZpklfg=</latexit>

(b)

<latexit sha1_base64="0HvjeAeH/C4j4bb9nsm8Runwbtg=">AAAB+XicbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAGiTykxIrWl0045fzQ3TpSZOUjaKGiQ7R8DQX/gm1cQMJUo5ld7ex4kZKGbPvTKm1sbm3vlHcre/sHh0fV45OuCWMtsCNCFeq+BwaVDLBDkhT2I43gewp73uw283tz1EaGwQMtInR9mAZyIgVQKvUmowTG8+WoWrMbdg6+TpyC1FiB9qj6NRyHIvYxIKHAmIFjR+QmoEkKhcvKMDYYgZjBFAcpDcBH4yZ53CW/iA1QyCPUXCqei/h7IwHfmIXvpZM+0KNZ9TLxP28Q0+TGTWQQxYSByA6RVJgfMkLLtAfkY6mRCLLkyGXABWggQi05CJGKcVpMJe3DWf1+nXQvG85Vo3nfrLXqRTNldsbOWZ057Jq12B1rsw4TbMae2DN7sRLr1Xqz3n9GS1axc8r+wPr4Bk20lCw=</latexit>

fadv

<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

<latexit sha1_base64="G8przGiG3L1JwughidQZ2Sr5wiQ=">AAACFHicbVC7SgNBFJ2Nrxhfq5Y2g0FIEcKuBLURAjYpI5gHJGuYndzEIbMPZu4GwrKtn+BX2GplJ7b2Fv6Lm7iCJp7qcM693HuOG0qh0bI+jNzK6tr6Rn6zsLW9s7tn7h+0dBApDk0eyEB1XKZBCh+aKFBCJ1TAPFdC2x1fzfz2BJQWgX+D0xAcj418MRScYSr1Tdqil3TYjyfJbWwnZdrjgwB1+UeqJ32zaFWsOegysTNSJBkaffOzNwh45IGPXDKtu7YVohMzhYJLSAq9SEPI+JiNoJtSn3mgnXieJKEnkWYY0BAUFZLORfi9ETNP66nnppMewzu96M3E/7xuhMMLJxZ+GCH4fHYIhYT5Ic2VSCsCOhAKENnsc6DCp5wphghKUMZ5KkZpZ4W0D3sx/TJpnVbss0r1ulqslbJm8uSIHJMSsck5qZE6aZAm4eSePJIn8mw8GC/Gq/H2PZozsp1D8gfG+xc4kJ3O</latexit>

V = f1
v , · · · , fH

v

<latexit sha1_base64="dXknU4L22rXZOSXD77nUvyfeDYI=">AAAB/nicbVDLSsNAFJ3UV62vqks3g0XoqiRF1GVREJcV7QOaUibT2zp0kgwzN2IJBb/Cra7ciVt/xYX/YhKz0NazOpxzL/fc4ykpDNr2p1VYWl5ZXSuulzY2t7Z3yrt7bRNGmkOLhzLUXY8ZkCKAFgqU0FUamO9J6HiTi9Tv3IM2Igxucaqg77NxIEaCM0wk10V4QG8Un1/ezAblil2zM9BF4uSkQnI0B+UvdxjyyIcAuWTG9BxbYT9mGgWXMCu5kQHF+ISNoZfQgPlg+nGWeUaPIsMwpAo0FZJmIvzeiJlvzNT3kkmf4Z2Z91LxP68X4eisH4tARQgBTw+hkJAdMlyLpAygQ6EBkaXJgYqAcqYZImhBGeeJGCXtlJI+nPnvF0m7XnNOasfX9UqjmjdTJAfkkFSJQ05Jg1yRJmkRThR5Is/kxXq0Xq036/1ntGDlO/vkD6yPb9j8liA=</latexit>

BFS

<latexit sha1_base64="dXknU4L22rXZOSXD77nUvyfeDYI=">AAAB/nicbVDLSsNAFJ3UV62vqks3g0XoqiRF1GVREJcV7QOaUibT2zp0kgwzN2IJBb/Cra7ciVt/xYX/YhKz0NazOpxzL/fc4ykpDNr2p1VYWl5ZXSuulzY2t7Z3yrt7bRNGmkOLhzLUXY8ZkCKAFgqU0FUamO9J6HiTi9Tv3IM2Igxucaqg77NxIEaCM0wk10V4QG8Un1/ezAblil2zM9BF4uSkQnI0B+UvdxjyyIcAuWTG9BxbYT9mGgWXMCu5kQHF+ISNoZfQgPlg+nGWeUaPIsMwpAo0FZJmIvzeiJlvzNT3kkmf4Z2Z91LxP68X4eisH4tARQgBTw+hkJAdMlyLpAygQ6EBkaXJgYqAcqYZImhBGeeJGCXtlJI+nPnvF0m7XnNOasfX9UqjmjdTJAfkkFSJQ05Jg1yRJmkRThR5Is/kxXq0Xq036/1ntGDlO/vkD6yPb9j8liA=</latexit>

BFS

<latexit sha1_base64="LWRMXr2rG5dHdln5SNYmf3R+69Q=">AAAB83icbVA9TwJBFNzDL8Qv1NJmIzGhIneGqCWJjSUkgiRwMXvLAzfs7V1235oQwi+w1crO2PqDLPwv7p1XKDjVZGZe3nsTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD496JrGaQ5cnMtH9iBmQQkEXBUropxpYHEm4i6bXmX/3CNqIRN3iLIUwZhMlxoIzdFKnfV+t+Q0/B10lQUFqpIDLfw1HCbcxKOSSGTMI/BTDOdMouIRFZWgNpIxP2QQGjioWgwnn+aELemYNw4SmoKmQNBfh98ScxcbM4sglY4YPZtnLxP+8gcXxVTgXKrUIimeLUEjIFxmuhWsA6EhoQGTZ5UCFopxphghaUMa5E62rpOL6CJa/XyW980Zw0Wh2mrVWvWimTE7IKamTgFySFrkhbdIlnAB5Is/kxbPeq/fmvf9ES14xc0z+wPv4BkNNkUg=</latexit>

P
<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

<latexit sha1_base64="LWRMXr2rG5dHdln5SNYmf3R+69Q=">AAAB83icbVA9TwJBFNzDL8Qv1NJmIzGhIneGqCWJjSUkgiRwMXvLAzfs7V1235oQwi+w1crO2PqDLPwv7p1XKDjVZGZe3nsTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD496JrGaQ5cnMtH9iBmQQkEXBUropxpYHEm4i6bXmX/3CNqIRN3iLIUwZhMlxoIzdFKnfV+t+Q0/B10lQUFqpIDLfw1HCbcxKOSSGTMI/BTDOdMouIRFZWgNpIxP2QQGjioWgwnn+aELemYNw4SmoKmQNBfh98ScxcbM4sglY4YPZtnLxP+8gcXxVTgXKrUIimeLUEjIFxmuhWsA6EhoQGTZ5UCFopxphghaUMa5E62rpOL6CJa/XyW980Zw0Wh2mrVWvWimTE7IKamTgFySFrkhbdIlnAB5Is/kxbPeq/fmvf9ES14xc0z+wPv4BkNNkUg=</latexit>

P
<latexit sha1_base64="fCeBiY9ZObHjAXC4CEYTUdmmw5c=">AAAB83icbVC7TsNAEDyHVwivACXNiQgpVWSjCCgj0VAmEnlIiRWdL5twyvls3e0hRVa+gBYqOkTLB1HwL9jGBSRMNZrZ1c5OEEth0HU/ndLG5tb2Tnm3srd/cHhUPT7pmchqDl0eyUgPAmZACgVdFChhEGtgYSChH8xvM7//CNqISN3jIgY/ZDMlpoIzTKVOb1ytuQ03B10nXkFqpEB7XP0aTSJuQ1DIJTNm6Lkx+gnTKLiEZWVkDcSMz9kMhilVLATjJ3nQJb2whmFEY9BUSJqL8HsjYaExizBIJ0OGD2bVy8T/vKHF6Y2fCBVbBMWzQygk5IcM1yJtAOhEaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/X6d9C4b3lWj2WnWWvWimTI5I+ekTjxyTVrkjrRJl3AC5Ik8kxfHOq/Om/P+M1pyip1T8gfOxzdMp5FO</latexit>

V

Figure 2: Untargeted attack. (a) Initially, fQ and its
variants V = {f1

v , · · · , fH
v } are among the top-K most

similar functions to fQ in the pool P . (b) After the attack,
using fadv as query removes fQ and its variants from the
top-K.

[40], [44] (or function search). In this task, given a
pool of functions P , a query function fQ, and a number
K (where K ≤ |P |), we have to identify in P the K
functions that, according to the attacked model, are more
similar to fQ. These K functions are the top-K for the
query fQ.

We consider two scenarios for an attacker interested
in attacking the function search task: targeted and untar-
geted attacks.

In a targeted attack, the adversary is given a pool
of functions, P , a set of target variants, V ⊂ P , and a
query function, fQ. The adversary has to find a function
fadv semantically equivalent to fQ. When fadv is used as
a query over P , the top-K must include i target functions
from V (with i ≤ K).

A typical targeted attack occurs when the attacker
wants to create an adversarial version fadv of a spe-
cific malicious function fQ. This malicious function must
resemble a certain benign function in P or one of its
variants. Consequently, when the defender uses the binary
function similarity system, a set of benign variants will be
ranked among the top-K functions most similar to fadv.

In a untargeted attack, the adversary is given a pool
of functions, P , a query function, fQ ∈ P , and all its
variants V in P . The adversary has to find a function

fadv semantically equivalent to fQ such that, when fadv
is used as query over P , at least i variants are not in the
top-K (with i ≤ |V |).

A practical untargeted attack occurs when the attacker
seeks to introduce a known vulnerable function, fQ, into
a firmware. Their goal is to create a function, fadv, that is
semantically equivalent to fQ but as dissimilar as possible
to all its variants, including fQ itself. As a result, when a
binary function similarity system is used for vulnerability
detection by the defender, none of the variants of fQ and
fQ itself will be ranked among the top-K functions of P
most similar to fadv.

We present a visual representation of a targeted attack
in Figure 1 and an untargeted attack in Figure 2.

3. Attack Overview

In this section, we present the black-box procedure
we utilize to assess the robustness of the models under
consideration. We first describe the objective function
the attacker seeks to solve and the optimization strategy
adopted for generating adversarial examples. Then, we
introduce the semantics-preserving techniques for manip-
ulating binary functions we embody in our attack.

3.1. Multi-Objective Optimization

In the following, we refer to the targeted attack case.
The same rationale, with the necessary minor adjustments,
holds for the untargeted case.

In the context of a targeted attack, given a query
function fQ, and set V ⊂ P of target variants, the goal of
the attacker consists of generating an adversarial exam-
ple fadv starting from fQ that maximizes the similarity
between fadv and all the target variants fv ∈ V . This
translates into the following multi-objective function on
an undefined number of variables (one for each variant):

max
fadv

(sim(fadv, f
1
v), . . . , sim(fadv, f

H
v)) (1)

We solve this multi-objective problem by reducing it
to the following max-min problem that takes into account
also the perturbation size:

max
fadv

min
fv

sim(fadv, fv)−λ· |len(fQ)− len(fadv)|
len(fQ)

(2)

where:
• len(·) takes a binary function as input and returns its

length in terms of the number of instructions;
• λ determines how much the size of the perturbation

should penalize the produced adversarial example. In
the following, we refer to λ as the penalty factor.

Informally, with this max-min problem, we maximize the
minimum similarity between fadv and the variants in V .

However, we highlight that differently from the com-
puter vision scenario [20], the perturbation size does not
present a significant concern within our threat model.
Indeed, as elucidated in [39], an adversarial binary code
must exhibit both validity and realism. Consequently, our
set of transformations must alter fadv so that it will still
look plausible when manually analyzed, which doesn’t
imply minimizing the modification size.

<latexit sha1_base64="of3jYblqJLBSajQETZTqUnG9cUI=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRXYUAWUkGugCIg/JsaLzZRNOOZ+tuzUisiK+ghYqOkTLt1DwL9jGBSRMNZrZ1c6OH0lh0LY/raXlldW19dJGeXNre2e3srffMWGsObR5KEPd85kBKRS0UaCEXqSBBb6Erj+5yPzuPWgjQnWL0wi8gI2VGAnOMJXcPsID+qPk6mY2qFTtmp2DLhKnIFVSoDWofPWHIY8DUMglM8Z17Ai9hGkUXMKs3I8NRIxP2BjclCoWgPGSPPKMHseGYUgj0FRImovweyNhgTHTwE8nA4Z3Zt7LxP88N8bRuZcIFcUIimeHUEjIDxmuRdoF0KHQgMiy5ECFopxphghaUMZ5KsZpOeW0D2f++0XSqdec01rjul5tNopmSuSQHJET4pAz0iSXpEXahJOQPJFn8mI9Wq/Wm/X+M7pkFTsH5A+sj29PsJXi</latexit>

IR

mov rax, 5
add rbx, rcx
cmp rax, rbx
jnz BLK1

xor rdx, rdx
jmp BLK3

ret

mov rcx, 10
mov [rbx], rax
jmp BLK5

sub rbx, 1
add rdx, 4
jmp BLK4

mov [rbx], rdx
jmp BLK5

BLK1BLK0
BLK2

BLK3 BLK4 BLK5

mov rax, 5
add rbx, rcx
cmp rax, rbx
jnz BLK1

xor rdx, rdx
sub rbx, 1
add rdx, 4
mov [rbx], rdx
jmp BLK3

ret

mov rcx, 10
mov [rbx], rax
jmp BLK3

BLK2 BLK0
BLK1

BLK3

<latexit sha1_base64="uBl6rcmbp+/wLdwkSsY5fR9I4RE=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRXYUAWUkGioUBHlIjhWdL5twyvls3a0RkRXxFbRQ0SFavoWCf8E2LiBhqtHMrnZ2/EgKg7b9aS0tr6yurZc2yptb2zu7lb39jgljzaHNQxnqns8MSKGgjQIl9CINLPAldP3JReZ370EbEapbnEbgBWysxEhwhqnk9hEe0B8lVzezQaVq1+wcdJE4BamSAq1B5as/DHkcgEIumTGuY0foJUyj4BJm5X5sIGJ8wsbgplSxAIyX5JFn9Dg2DEMagaZC0lyE3xsJC4yZBn46GTC8M/NeJv7nuTGOzr1EqChGUDw7hEJCfshwLdIugA6FBkSWJQcqFOVMM0TQgjLOUzFOyymnfTjz3y+STr3mnNYa1/Vqs1E0UyKH5IicEIeckSa5JC3SJpyE5Ik8kxfr0Xq13qz3n9Elq9g5IH9gfXwDWRWV6A==</latexit>

NS

mov rax, 5
add rbx, rcx
cmp rax, rbx
jnz BLK1

xor rdx, rdx
sub rbx, 1
add rdx, 4
mov [rbx], rdx
jmp BLK3

ret

mov rcx, 10
mov [rbx], rax
cmp rax, 0xdeadbeef
je BLK3

BLK0 BLK1

BLK2

BLK4

mov rdx, 0
mov rcx, rax
and rax, rdx
ret

<latexit sha1_base64="5g4OcGkQMjZvFAQOmrtJZH4Beq8=">AAAB/nicbVC7TsNAEDyHVwivACXNiQiJKrKjCCjDo6AMEnlIcRSdL5twyvls3a0RkRWJr6CFig7R8isU/Au2cQEJU41mdrWz44VSGLTtT6uwtLyyulZcL21sbm3vlHf32iaINIcWD2Sgux4zIIWCFgqU0A01MN+T0PEml6nfuQdtRKBucRpC32djJUaCM0wk10V4QG8UX12czwblil21M9BF4uSkQnI0B+UvdxjwyAeFXDJjeo4dYj9mGgWXMCu5kYGQ8QkbQy+hivlg+nGWeUaPIsMwoCFoKiTNRPi9ETPfmKnvJZM+wzsz76Xif14vwtFZPxYqjBAUTw+hkJAdMlyLpAygQ6EBkaXJgQpFOdMMEbSgjPNEjJJ2Skkfzvz3i6Rdqzon1fpNrdKo580UyQE5JMfEIaekQa5Jk7QIJyF5Is/kxXq0Xq036/1ntGDlO/vkD6yPb71Ylhg=</latexit>

DBA

mov rax, 5
add rbx, rcx
cmp rax, rbx
jnz BLK1

xor rdx, rdx
sub rbx, 1
add rdx, 4
mov [rbx], rdx
jmp BLK3

ret

mov rcx, 10
push rdx
push rcx
push rax
mov rdx, 0
mov rcx, rax
and rax, rdx
pop rax
pop rcx
pop rdx
mov [rbx], rax
jmp BLK3

BLK2

BLK0 BLK1

BLK3

BLK3

<latexit sha1_base64="aIWu8cbi+J05SMOGDDMzPFUZj3o=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRXYUAWUQDWUQ5CE5VnS+bMIp57N1t0ZEVsRX0EJFh2j5Fgr+Bdu4gISpRjO72tnxIykM2vantbS8srq2Xtoob25t7+xW9vY7Jow1hzYPZah7PjMghYI2CpTQizSwwJfQ9SeXmd+9B21EqG5xGoEXsLESI8EZppLbR3hAf5TcXMwGlapds3PQReIUpEoKtAaVr/4w5HEACrlkxriOHaGXMI2CS5iV+7GBiPEJG4ObUsUCMF6SR57R49gwDGkEmgpJcxF+byQsMGYa+OlkwPDOzHuZ+J/nxjg69xKhohhB8ewQCgn5IcO1SLsAOhQaEFmWHKhQlDPNEEELyjhPxTgtp5z24cx/v0g69ZpzWmtc16vNRtFMiRySI3JCHHJGmuSKtEibcBKSJ/JMXqxH69V6s95/RpesYueA/IH18Q1EypXb</latexit>

SA

add rbx, rcx
mov rax, 5
cmp rax, rbx
jnz BLK1

xor rdx, rdx
sub rbx, 1
add rdx, 4
mov [rbx], rdx
jmp BLK3

ret

mov rcx, 10
mov [rbx], rax
jmp BLK3

BLK2 BLK0 BLK1

BLK3

Figure 3: Semantics-preserving transformations embodied in the attack.

3.1.1. Greedy Optimizer. To solve the max-min problem,
we use an ε-greedy gradient-free optimizer to iteratively
modify fQ toward the desired similarity outcome. That is,
maximize the similarity between the adversarial example
fadv and the least similar variant in P .

At each iteration, starting from the output f ′
adv of

the previous iteration (or the original function for the
first iteration), we generate multiple candidate adversarial
examples. This is done by applying semantics-preserving
transformations from a predefined set TR to specific loca-
tions within f ′

adv identified in the set POS. Specifically,
we create a fixed number of candidates by considering all
possible pairs ⟨tr, pos⟩, where tr ∈ TR and pos ∈ POS.
Notably, a single transformation can generate multiple
candidates when applied to a given location. The next
section details the specific semantics-preserving transfor-
mations used in this process.

For each candidate, we compute the objective function
in Equation 2; then, we select the adversarial example fadv
for the next iteration using an ε-greedy procedure over the
generated candidates. Specifically, with probability 1 −
ε, we select the candidate that maximizes the objective
function, and with probability ε, we choose a suboptimal
one. At the end of the iterative procedure, we select as the
final fadv the one that produced the highest value for the
objective function among all fadv generated at the end of
each iteration. This is then used as a query over P .

A certain semantics-preserving transformation can
only be applied to a specific set of positions inside the
original function we want to mutate (for example, we
cannot swap instructions having a dependency). However,
we have to further restrict this set to keep our attack
computationally feasible. We do this by identifying the
positions where transformations are more likely to greatly
impact the similarity function. Here, each position is an
assembly instruction within the function being modified.
Specifically, the importance of instruction i ∈ f ′

adv is the
absolute variation of the similarity value of f ′

adv and its
least similar function fv ∈ V measured when removing i:

IMi = |sim(f ′
adv, fv)− sim(f ′

adv \ i, fv)|, (3)

where f ′
adv \ i is the function f ′

adv without instruction i.
After computing the importance score for each instruc-

tion i ∈ f ′
adv, the ones with the highest value will be can-

didates for applying semantics-preserving perturbations.

3.2. Semantics-Preserving Transformations

As noted in [39], an adversarial function fadv, gen-
erated from a binary function fQ must satisfy problem-
space constraints, including preserving its semantics.

Figure 3 illustrates the semantics-preserving transfor-
mation techniques we embodied in our attack strategy.
Some of these were initially discussed in [9], together with
a categorization based on whether they modify or not the
control-flow graph (CFG). Among these transformations,
we embed in our attack strategy: Instruction Reordering
(IR), Node Split (NS), and Dead Branch Addition (DBA).
Specifically, IR reorders consecutive data-independent in-
structions within the function, ensuring that the swap pre-
serves the semantics. NS splits an existing CFG node into
three separate nodes using unconditional jumps, without
altering the semantics of the function. Finally, DBA intro-
duces dead code— specifically, a strand (i.e., a sequence
of data-dependent assembly instructions [3])— into a new
basic block that is guarded by an always-false branch.

Additionally, we introduce a new transformation called
Strand Addition (SA), which inserts a strand into an ex-
isting CFG node. The strands under consideration contain
neither control flow nor memory-modifying instructions.
Furthermore, using liveness analysis, we identify all regis-
ters and flags used within the strand, saving their contents
at the beginning and restoring them at the end, to ensure
that the function’s semantics remain unaltered.

We select the strand to add to the function by enu-
merating a set of candidates sampled from a large dataset
of available strands. Rather than defining a fixed set of
strands, we rely on an embedding space to establish a
set of candidates that is dynamically updated at the end
of each iteration within the optimization procedure. We
initialize this set using strands uniformly sampled from
our large dataset. At the end of each optimizer iteration,
we update part of the set with strands selected from the
closest neighbors (using the embedding space) of those
representing the top greedy actions from the previous
iteration (specifically from the SA category), while the
remaining portion is filled with new random strands.

We define the embedding space using a strand embed-
ding model to transform strands into vectors. These vec-
tors are grouped according to the semantics of the strands,
allowing us to establish a notion of proximity between
them. We choose BinBert [3] as the model for generating

strand embeddings because it has been specifically fine-
tuned for strands similarity detection.

We provide a detailed pseudocode of our attack strat-
egy in Appendix A.

4. Target Systems

In this section, we illustrate the binary function sim-
ilarity models we attacked. Based on [31], we select the
different solutions according to the following selection
criteria:

• Scalability. To demonstrate the potential vulnerabil-
ities of models in a real-world scenario, we evaluate
approaches that are not slow at inference time.

• Diversity of proposed approach. Binary function
similarity solutions span multiple research commu-
nities (i.e., system security, programming languages,
machine learning) and multiple approaches. More-
over, within each community, diverse techniques have
emerged; for instance, the machine learning commu-
nity explores various architectures like GNNs, RNNs,
and Transformers. Therefore, we select a range of
models that not only cover different architectural
structures but have also been proposed by different
research communities.

We now briefly describe the targeted models.

4.1. Graph Neural Network (GNN): Gemini and
GMN

Gemini (2017) [46] is built on a graph neural network
derived from the Structure2Vec [12] model and trained
using a Siamese architecture. It converts an ACFG (a
control flow graph with manual block-level features) into
an embedding vector, which is generated by aggregating
the embedding vectors of the individual nodes within
the ACFG. Given two binary functions, their similarity
is determined by the cosine similarity of their ACFG
embedding vectors.
Graph Matching Network (GMN) (2019) [29] consists
of a graph neural network that calculates the similarity
between two functions by representing them through their
CFGs. Unlike standard GNN solutions (i.e., Gemini [46]),
where the embedding vector for a node captures properties
from its neighborhood only, GMN also searches for pos-
sible matches across the two input graphs. In particular,
GMN computes the distance between the inputs by trying
to match their nodes.

4.2. Intermediate Representation (IR) and Neural
Network (NN): Zeek

Zeek [41] uses an intermediate representation to capture
the semantics of the input functions. Specifically, starting
from the CFG of a function, it first decomposes each
basic block into strands and converts the assembly code
in each strand to a normalized intermediate representation
(i.e., VEX-IR). Subsequently, it generates a hash value for
each block, which is then indexed in a vector to represent
the function. Finally, it uses two fully connected hidden
layers to detect the similarity between vectors derived
from semantically equivalent code sections.

4.3. Fully Connected Neural Network: BinFinder

BinFinder (2023) [40] employs a fully connected neural
network trained using a Siamese architecture to gener-
ate function embeddings, which are then employed for
similarity calculation. It represents the input functions
through a set of static features that are claimed to be robust
to code obfuscation, compiler optimization, and cross-
compilation processes. These features are first processed
using different tokenizers; then, they are transformed into
one-hot vectors.

4.4. Recurrent Neural Network (RNN): SAFE

SAFE (2022) [33] is a recurrent neural network-based
model trained using a Siamese architecture, that con-
verts the linear disassembly of the input functions into
embedding vectors. It first computes an embedding for
each assembly instruction using a model derived from
the word2vec [34] word embedding model. Then, using a
self-attentive component, it aggregates these vectors into
a final function embedding vector. Similar to Gemini [46],
the similarity between two functions consists of the cosine
distance between their corresponding embeddings.

4.5. Transformer: jTrans, Trex, PalmTree

jTrans (2022) [44] is a BERT-based model [15] that
combines instruction semantics with CFG information to
infer the binary code representation. When considering
an assembly instruction, jTrans treats each mnemonic and
operands as tokens and computes an embedding for each
of them. However, to make jTrans better in capturing
the control flow execution, jump instructions are modeled
differently from other ISA instructions. The last layer
of the model generates the function’s embedding, which
can then be used for similarity calculation. jTrans has
been pre-trained on two tasks (i.e., Masked Language
Model and Jump Target Prediction) and then fine-tuned
for Binary Similarity Detection.
Trex (2023) [38] is a transfer-learning-based framework
that adopts a hierarchical Transformer [37] for learning
functions’ semantics via regular and forced execution
traces. The model is first pre-trained using a Masked Lan-
guage Modeling-like task. In particular, given a function’s
trace (which comprises both instructions and values),
some parts are randomly masked to be predicted during
model training using the surrounding context. Once pre-
trained, the model is then fine-tuned for function similarity
detection, using functions’ static code (instead of traces)
as input to the model. Specifically, the function’s embed-
ding is the output of a two-layer MLP. This MLP takes as
input the mean pooling of the embeddings produced by
the last self-attention layer of the fine-tuned model.
PalmTree (2021) [28] is a BERT-based [15] pre-trained
assembly language model for generating general-purpose
instruction embeddings. Here, assembly instructions are
treated as separate sentences composed by basic tokens.
In particular, each operand is decomposed into basic el-
ements, normalizing strings and addresses with special
tokens to avoid the OOV (Out-Of-Vocabulary) problem.
The model is pre-trained considering three tasks: Masked

Language Model, Context Window Prediction, and Def-
Use Prediction. Since PalmTree is an instruction embed-
dings model, to evaluate its performance on the function
similarity task, we follow the strategy used in [3], where
an LSTM aggregates the instruction embeddings produced
by PalmTree into a function embedding.

5. Datasets and Implementation

This section describes the datasets we use to evaluate
our approaches and implementation details.

5.1. Dataset

We test our approach by considering a codebase of
binary functions extracted from 8 open-source projects
written in C language: binutils, curl, openssl, sqlite, gsl,
libconfig, ffmpeg, and postgresql. We compile the pro-
grams for the amd64 architecture, considering two com-
pilers (i.e., gcc-9.4.0 and clang-12) and two opti-
mization levels (namely, O0 and O3), obtaining 4 different
combinations. The collection we obtained reflects real-
world software, including binaries utilized in the evalua-
tion or training of the binary function similarity systems
examined in this work.

We extract the binary functions using Radare2 [35]
disassembler, excluding those that contain fewer than 6
assembly instructions or 2 CFG nodes, obtaining 127,534
functions. Our final codebase consists only of the func-
tions for which there are exactly four variants, one for
each combination of compiler and optimization level.

Once obtained the codebase, we create pools of differ-
ent sizes. A pool P of size S is composed of S/4 distinct
functions uniformly sampled from the codebase together
with their variants. Our final targeted dataset comprises
1,000 samples, each representing a query on a certain pool
on which the attack has to be carried out. Specifically,
each targeted sample contains: the pool P ; a set V ⊂ P
of target variants; a query function fQ (the one that will
be modified by the attacker) extracted randomly among
our codebase of functions. Note that fQ ̸∈ V .

For the untargeted case, we create a similar dataset of
1,000 samples, each of which contains: the pool P ; a set
V ⊂ P of target variants; a query function fQ ∈ V (the
one that will be modified by the attacker).

5.2. Implementation Details

We implement our attack as a two-phase procedure;
the first one consists of disassembling the input functions
and building a high-level representation using their CFGs;
the latter consists of applying the transformations to the
aforementioned representations and then feeding them in
input to the target model. Therefore, we remark that our at-
tack is not done using binary rewriting techniques but it is
performed on this high-level representation. However, we
want to stress that all our transformations are semantics-
preserving by design, as detailed in Section 3.2; further-
more, all these transformations can be effectively applied
as source code modifications by first translating the C code
of the function into assembly code (by compiling the .c
file into a .s file) and then by directly modifying the

obtained assembly code. In this way, the injection process
will not rely on binary rewriting techniques, which are
more prone to alter the semantics due to relocation issues.

We built our CFG extraction module upon the
Radare21 and angr [42] disassemblers.

Our testing pipeline has been coded in Python. We
consider the official implementation and settings for each
target model except for Gemini, GMN, and ZEEK for
which we use alternative implementations.2

6. Experimental Results

In this section, we provide the results of our ex-
perimental evaluation. We first define the performance
metrics we use, then we describe our choice of the attack
hyperparameters and finally, we evaluate the resiliency of
binary similarity models by investigating the following
research questions:

RQ1: Do the models exhibit greater robustness
against targeted or untargeted attacks?
RQ2: Are the considered transformations able to
generalize across various categories of target mod-
els? Do adversarial examples transfer across mod-
els?
RQ3 Is it possible to deduce aspects of the model
through the distribution of applied transforma-
tions?

Successful Attacks. According to the definitions provided
in Section 2.1, in the targeted scenario, we deem an attack
as successful when at least i variants in V are among
the top-K results when fadv is used as a query over P ;
contrarily, in the untargeted case, an adversarial example
is successful when at least i variants in V are ranked
outside the top-K when fadv is used as query over P .

As seen in Section 5.1, each attack considers a set V
of exactly 4 variants, meaning i ≤ 4. The attack becomes
more challenging as i increases. For instance, when i = 1,
a targeted attack is successful when just one variant is
ranked among the top-K. Conversely, when i = 4, all
variants must be in the top-K, making the attack harder.

Also, the factor K affects the outcome of the attack,
specifically low values of K make the targeted attack
harder. For example, let’s assume i = 4; with K = 4
the attack succeeds only if the top-K set is exactly the
set of variants. When increasing K to 5, the attack is
successful even if one function of P not in V is in the top-
K. Conversely, increasing K makes the untargeted attack
more challenging. For instance, when K = |P | − 4 the
attack succeeds only when the top-K equals P \ V .

The size of P impacts the result of the attack. As
the pool size increases, a targeted attack becomes more
difficult because more functions could be ranked among
the top-K. Contrarily, in the untargeted case, the attack
becomes more difficult as the pool size decreases, since
fewer functions in P can be ranked within the top-K.

1. https://github.com/radareorg/radare2
2. Due to unavailability of original implementations or incompatibility

with our pipeline.

https://github.com/radareorg/radare2

TABLE 1: Untargeted attack at K = 10 when considering pools with size 128 and 512 and setting λ = 0. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

|P | 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512
Recall pre attack 0.71 0.56 0.94 0.86 0.73 0.51 0.91 0.83 0.94 0.84 0.81 0.67 0.95 0.89 0.90 0.79 0.86 0.74
Recall post attack 0.07 0.04 0.03 0.01 0.05 0.02 0.06 0.04 0.02 0 0.04 0.01 0.04 0.02 0.03 0.01 0.04 0.02

wASR 92.99 96.27 97.30 99.0 95.23 98.12 93.80 96.33 98.30 99.58 96.0 99.15 96.17 98.43 96.69 99.37 95.81 98.28

INIT 63.63 82.87 16.10 36.40 61.76 84.70 24.40 39.40 19.40 42.60 51.10 73.20 12.82 29.22 27.66 53.15 34.61 55.19
ASR 96.69 98.10 99.30 99.70 98.06 99.09 95.80 97.80 99.20 100.0 99.40 100.0 97.61 99.30 98.0 99.90 98.01 99.23

M-Instrs 235.07 234.18 214.44 215.0 201.77 202.11 226.76 227.07 237.61 236.85 133.19 133.06 195.51 193.39 524.32 522.24 246.08 245.49@1

M-Nodes 26.98 26.95 16.90 16.94 25.68 25.83 41.73 41.80 13.68 13.66 16.74 16.73 10.99 10.88 16.69 16.80 21.17 21.20
INIT 38.48 64.33 5.90 16.10 35.73 72.26 9.90 21.20 4.90 17.40 24.20 48.40 4.97 12.82 10.62 28.63 16.84 35.14
ASR 95.39 97.49 98.80 99.30 97.26 98.86 94.70 96.90 98.80 99.90 99.20 100.0 97.22 98.81 97.90 99.40 97.41 98.83

M-Instrs 236.42 234.41 214.09 214.44 201.71 202.06 226.78 226.96 238.13 236.93 133.35 133.06 195.75 194.03 524.57 522.88 246.35 245.60@2

M-Nodes 27.12 27.0 16.87 16.92 25.61 25.81 41.67 41.79 13.69 13.66 16.75 16.73 11.01 10.91 16.67 16.79 21.17 21.20
INIT 13.23 27.15 0.80 3.40 9.02 34.02 3.0 6.80 1.50 3.50 1.40 12.0 0.89 2.49 1.20 3.90 3.88 16.66
ASR 91.58 95.39 97.0 98.80 94.52 97.60 93.10 95.90 97.40 99.30 94.80 99.10 95.83 98.11 95.89 99.20 95.07 97.92

M-Instrs 239.26 237.11 212.59 213.98 202.82 202.18 226.88 226.92 239.68 237.66 135.64 133.94 197.18 195.07 523.93 523.35 247.18 246.28@3

M-Nodes 27.28 27.11 16.93 16.88 25.26 25.62 41.59 41.72 13.69 13.68 16.96 16.84 11.05 10.97 16.71 16.75 21.18 21.20
INIT 1.20 3.01 0 0 0 3.08 0 0 0 0 0 0 0 0 0 0 0.15 0.76
ASR 88.28 94.09 94.10 98.20 91.10 96.92 91.60 94.70 97.40 99.10 90.60 97.50 94.04 97.51 94.99 99.0 92.76 97.13

M-Instrs 241.56 239.12 212.66 214.32 114.09 202.45 226.61 226.92 239.68 237.94 137.80 135.35 199.09 195.80 525.71 523.85 248.23 246.97@4

M-Nodes 27.73 27.28 17.18 16.92 5.52 25.52 41.52 41.66 13.70 13.68 17.22 17.0 11.17 11.01 16.76 16.75 21.30 21.23

Performance Metrics. We evaluate the robustness of the
target models by using the Attack Success Rate (ASR) as
the main metric, which is the percentage of adversarial
examples that meet the success condition. We calculate
the ASR for each value of i ∈ {1, 4} (ASR@1, ASR@2,
ASR@3, ASR@4). Recall that in ASR@i we consider
successful the targeted attacks that bring at least i variants
in top-K. In the untargeted case, the attacks have to move
at least i variants outside top-K.

We also defined an aggregated ASR, namely wASR,
in which we decreasingly penalize the success of an
experiment depending on the number of variants satisfying
the success condition. For example, if when using fadv as
query only one of the variants is among the top-K, then
this experiment will count for 0.25, if there are two it will
count for 0.50, and so on.

We use the percentage of query functions where the
success condition at i is met before executing the attack,
namely INIT@i metrics for i ∈ {1, 4} as reference.

In our untargeted attack experiments, we also compute
the standard recall@K before (Recall pre attack) and
after (Recall post attack) the attack. This quantifies the
model’s performance on clean data and its degradation
following untargeted attacks.

We further investigate the quality of our attack using
two other support metrics for each value of i ∈ {1, 4},
computed over the set of successful examples. The first
metric, M-Instrs@i, represents the number of new in-
structions in fadv at the end of the attack. The second
metric, M-Nodes@i, measures the number of new nodes
in fadv at the end of the attack.

Parameters of the Attack. We run our attack for up to
30 iterations, exploring λ values of 0, 0.01, and 0.3 (see
Section 3.1) to assess its impact on our results. Given that
the average length of our query functions is approximately
100, we perturb 50 positions—about half of the total. As
in [44], we use pool sizes of 32, 128, 512, and 1000.

Due to the computational overhead of dynamically
updating the set of candidates (see Section 3.2), the SA
and DBA transformations are significantly slower than the
others. To keep our experiment durations reasonable, we
limit these transformations by testing 20 strands from a
candidates’ set composed by 100 strands with 50% of
random strands.

6.1. RQ1: Targeted vs Untargeted Attacks

In this section, we investigate the robustness of the
considered models when subject to targeted and untar-
geted attacks. For brevity, we report in the tables and the
plots only the results corresponding to the 128 and 512
pools and to λ = 0, which is the worst case according to
the modification size. Furthermore, we discuss only the
results @4, corresponding to the more difficult setup, and
the wASR. For the complete results, see Appendix B.

25 50 75 100 125
K

0

20

40

60

80

100

wA
SR

UNTARGETED

5 10 15 20 25 30 35 40 45 50
K

20

40

60

80

100
TARGETED

GEMINI
GMN

ZEEK
BINFINDER

SAFE
JTRANS

TREX
PALMTREE

avg

Figure 4: wASR while varying the K value and consid-
ering |P | = 128. The dotted curve represents the average
values across the different models.

6.1.1. Untargeted Attacks. Table 1 presents the results
for the untargeted attack scenario.

For |P | = 128, we observe an average INIT@4 of
0.15%, indicating that the success condition is virtually
never met without the attack. After applying the attack and
querying the pool with the generated fadv, we achieve an
average ASR@4 of 92.76%, meaning that in over 9 out
of 10 cases, all variants in V are pushed outside the Top-
10. Furthermore, when considering the wASR, the attack
succeeds in 95.81% of cases.

Figure 4 shows the average wASR for K values rang-
ing from 4 to 128. For small K values (≤ 25), the average
wASR remains well above 90% but decreases sharply as
the search depth increases, consistent with observations in
Section 6. However, see Figure 5, the wASR maintains an
average consistently above 80%, indicating that a larger
difference between K and the pool size significantly
benefits the attacker. Notably, when the binary function
similarity model is used to detect vulnerable or malicious
functions, the pool likely contains thousands of functions,
making untargeted attacks significantly easier.

TABLE 2: Targeted attack at K = 10 when considering pools with size 128 and 512 and setting λ = 0. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

|P | 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512 128 512
wASR 48.25 25.10 64.68 40.15 26.07 9.34 88.95 71.37 64.80 40.02 45.25 23.35 54.85 30.48 63.60 30.24 57.06 33.76

INIT 17.20 5.70 15.80 3.90 15.0 3.47 12.12 3.11 13.90 4.0 23.90 4.80 12.10 3.30 14.97 4.11 15.62 4.05
ASR 71.90 45.10 78.60 59.80 43.16 19.49 94.39 80.96 80.30 59.10 80.20 49.10 68.80 44.60 78.04 47.19 74.42 50.67

M-Instrs 173.62 170.18 214.53 210.35 94.86 101.21 155.21 154.78 123.74 128.05 77.29 84.46 112.70 112.76 193.41 182.05 143.17 142.98@1

M-Nodes 13.83 15.23 18.87 18.35 11.18 10.80 33.28 33.0 15.72 15.72 11.95 12.66 11.44 11.36 18.28 18.62 16.82 16.97
INIT 9.40 2.30 8.10 1.90 6.53 0.71 7.82 1.80 8.60 1.40 8.30 0.80 8.20 1.60 7.98 1.40 8.12 1.49
ASR 57.0 29.20 71.10 47.30 31.94 11.33 91.68 75.55 71.40 46.30 58.90 28.0 60.40 34.40 70.06 34.97 64.06 38.38

M-Instrs 173.68 173.84 213.81 214.23 96.81 108.93 155.94 156.73 126.32 128.05 84.68 94.18 112.83 114.63 192.08 173.26 144.52 145.67@2

M-Nodes 14.68 16.26 18.63 18.68 10.35 11.50 33.40 33.46 15.89 15.72 12.65 13.61 11.30 11.13 18.09 18.08 16.87 17.30
INIT 2.70 0.50 3.30 0.40 1.84 0 4.91 0.80 3.10 0.3 1.30 0.1 4.10 0.50 2.89 0.10 3.02 0.34
ASR 38.0 15.70 60.40 32.30 18.57 4.29 87.37 67.33 60.10 32.30 27.30 10.40 49.50 24.10 57.58 22.14 49.85 26.07

M-Instrs 177.87 181.08 214.63 224.91 93.72 108.83 157.19 159.0 129.75 131.05 96.62 105.67 115.36 114.20 189.60 175.48 146.84 150.01@3

M-Nodes 15.76 17.45 18.92 19.17 10.26 11.14 33.67 33.88 15.84 15.88 13.86 15.56 11.34 11.20 18.15 19.18 17.23 17.93
INIT 0.90 0.20 1.60 0 0.31 0 3.21 0.40 1.40 0 0.30 0.10 2.60 0.30 1.20 0 1.44 0.13
ASR 26.10 10.40 48.60 21.20 10.61 2.24 82.36 61.62 47.40 22.40 14.60 5.9 40.70 18.80 48.70 16.63 39.88 19.90

M-Instrs 190.36 192.19 219.14 239.85 104.95 124.5 159.24 160.23 136.29 140.71 109.49 118.15 116.21 117.37 192.21 176.20 153.49 158.65@4

M-Nodes 16.57 18.25 19.48 19.49 10.99 13.45 34.19 34.12 16.05 16.40 14.71 16.24 11.42 11.53 18.37 19.39 17.72 18.60

The recall@10 metric further underscores the models’
vulnerability to untargeted attacks. Specifically, for a pool
of 128 functions, the recall@10 decreases from an initial
average of 0.86 to 0.04 after running the attack.

6.1.2. Targeted Attacks. Table 2 presents the attack
results for the targeted scenario. With a pool of 128
functions, the average INIT@4 is 1.44%, indicating that
variants in V are ranked in the Top-10 for their cor-
responding fQ in less than 2% of cases. The average
ASR@4 is 39.88%, meaning that when querying with
fadv, all variants in V are ranked in the Top-10 nearly
40% of the time. The wASR is 57.06%.

25 50 75 100 125 150 175 200
K

50

60

70

80

90

100

wA
SR

UNTARGETED

5 10 15 20 25 30 35 40 45 50
K

0

20

40

60

80

TARGETED

GEMINI
GMN

ZEEK
BINFINDER

SAFE
JTRANS

TREX
PALMTREE

avg

Figure 5: wASR while varying the K value and consid-
ering |P | = 512. The dotted curve represents the average
values across the different models.

Figure 4 illustrates the average wASR for targeted
attacks across K ∈ [4, 50] when querying a pool of 128
functions, showing a rapid increase to values exceeding
40%. Figure 5 depicts similar trends with a pool of 512
functions; however, the wASR increases more gradually
compared to |P | = 128. As reported in Appendix B,
model robustness further increases with a pool of 1000
functions, yielding an average wASR of 25.25%.

6.1.3. Impacts of the Modification Size. We study how
the modification size impacts models robustness by vary-
ing the λ parameter in the Equation 2. We analyzed three
models selected to be representative of all DNN archi-
tectures (specifically, Gemini, SAFE, and jTrans) with
λ values of 0, 0.01, and 0.3. The complete results are
reported in Appendix B.

As shown in Figure 6, increasing λ leads to a signif-
icant decrease in the average wASR in both untargeted
and targeted scenarios. In the untargeted case, the wASR
goes from 95.76% at λ = 0 to 77.39% at λ = 0.01, and to

24.59% at λ = 0.3. Correspondingly, the average number
of modifications, M-Instrs@4, decreases from 206.34 at
λ = 0 to 32.26 at λ = 0.01, and to 20.26 at λ = 0.3. In
the targeted case, the average wASR goes from 52.77%
at λ = 0 to 27.74% at λ = 0.01, and to 9.94% at λ = 0.3,
while the M-Instrs@4 decreases from 145.38 at λ = 0 to
19.10 at λ = 0.01, and to 6.19 at λ = 0.3.

25 50 75 100 125
K

0

20

40

60

80

100

wA
SR

UNTARGETED

5 10 15 20 25 30 35 40 45 50
K

0

20

40

60

80

TARGETED

GEMINI_0
SAFE_0

JTRANS_0
avg_0

GEMINI_0.01
SAFE_0.01

JTRANS_0.01
avg_0.01

GEMINI_0.3
SAFE_0.3

JTRANS_0.3
avg_0.3

Figure 6: wASR while varying the K value, considering
|P | = 128 and λ ∈ {0, 0.01, 0.3}. For each value of λ, we
show the wASR together with the average on three models
differing in architecture. We represent in green the results
corresponding to λ = 0, in red the results corresponding
to λ = 0.1, and in blue the ones for λ = 0.3.

Key takeaway. All models are more susceptible to
untargeted attacks than targeted ones. Specifically,
the average wASR is 95.81% vs 57.06% when
querying a pool of 128 functions, and 98.28% vs
33.76% when querying a pool of 512 functions.

6.2. RQ2: Generalizability and Transferability

In this section, we discuss the generalizability of our
approach, showing how the considered metrics vary across
different models. We investigate whether the generated
adversarial examples can be transferred across diverse
models, to demonstrate the variation in the attack success
rate when adversarial examples intended for one model
are presented to a different model.

6.2.1. Generalizability. Our black-box transformations
alter both the CFG and instruction sequence of a function.
A key point is whether they are sufficient to attack all
examined models.

TABLE 3: Transferability matrix for the untargeted attack case, considering |P | = 128 and K = 10. In the rows,
we indicate the model for which the adversarial examples were created, and in the columns, the model on which the
examples are tested. Each value represents the wASR.

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree TSR
Gemini ■ 70.67 82.34 23.55 44.69 42.66 35.70 71.92 53.08
GMN 68.30 ■ 85.02 20.30 50.78 50.98 47.77 67.17 55.76
ZEEK 71.59 76.13 ■ 20.08 62.40 56.58 60.39 70.91 59.73

BinFinder 79.90 80.15 85.65 ■ 60.68 61.18 58.77 68.19 70.65
SAFE 61.02 62.38 84.38 24.22 ■ 72.12 79.57 68.77 64.64
jTrans 63.60 57.38 77.38 20.15 65.05 ■ 60.60 59.43 57.66
Trex 58.02 57.99 82.36 19.96 76.95 67.69 ■ 71.44 62.06

PalmTree 71.39 77.15 87.27 31.41 83.74 74.15 88.33 ■ 73.35
VR 67.69 68.84 83.49 22.81 63.47 60.77 61.59 68.26 ■

random 67.81± 0.06 55.68± 0.73 79.92± 0.15 17.87± 0.97 45.94± 0.30 49.69± 0.80 31.66± 1.02 53.16± 0.32 50.22

In the untargeted setting with |P | = 128, Figure 4
shows similar performance across most models at various
levels of K, especially for K < 25, as confirmed in
Table 1. Here, Gemini is the most robust model (wASR =
92.99%), while SAFE is the weakest (wASR = 98.30%).

As visible in Figure 5, this trend holds for larger pools.
As K increases, ZEEK and jTrans stand out as the most
robust models, with SAFE remaining the weakest. Even at
K = 100, ZEEK is fooled in over 80% of cases, suggest-
ing that blacklist defenses implemented by binary function
similarity models can be bypassed in practice (e.g., a
vulnerable function ranked beyond the top 100 may be
ignored). We speculate that SAFE is more vulnerable due
to its reliance on pre-trained embeddings of preprocessed
instructions, making it sensitive to transformations like SA
and DBA.

Interestingly, Table 1 shows that both ZEEK and Gem-
ini have some of the lowest Recall pre attack values
among the models, yet their Recall post attack values are
among the highest, meaning they are more robust against
our attack. In contrast, models with top performance on
clean data, like GMN, SAFE, and Trex, are the ones
exhibiting less robustness, as they show lower Recall post
attack values.

As visible in Table 2 and in Figure 4, the performance
at K = 10 in the targeted scenario is comparable across
the majority of the models, except for BinFinder, which is
the least robust model, and ZEEK which is the most robust
one. BinFinder learns function semantics considering fea-
tures like VEX-IR instructions and constants, which are
heavily impacted by SA and DBA. All the other models
exhibit consistent robustness, with jTrans being the most
robust and SAFE the least, showing a wASR of 45.25%
and 64.80% respectively. Overall, the models relying on
an instructions-based representation (such as BinFinder
and SAFE) seem to be less robust against our attack.
As visible in Figure 5, this same analysis holds when
increasing the pool size to 512.

Key takeaway. In the untargeted case, the perfor-
mance at various levels of K is comparable across
most models, with SAFE being the least robust
and ZEEK the most robust model. While in the
targeted case, ZEEK is the most robust model and
BinFinder the least robust.
Top performance on clean data does not correspond
to greater robustness. Models showing greater Re-
call pre attack, often exhibit lower Recall post
attack, whereas those with poorer clean data per-
formance, tend to have higher Recall post attack.

6.2.2. Transferability. Our attack strategy employs a
greedy optimizer that iteratively applies transformations
based on feedback from the target model. An intriguing
aspect to explore is whether an adversarial example gen-
erated against one model can be leveraged to target all
the other models under analysis. We define this property
as the Transferability Success Rate (TSR). Furthermore,
we want to investigate how models react against adver-
sarial examples designed for other models. We define this
property as the Vulnerability Rate (VR).

To evaluate these two properties, we compare using
a simple baseline that applies a sequence of random
transformations to the query function fQ. The random
baseline is run for the same number of iterations as the
greedy procedure, and the experiment is repeated three
times. Note that this baseline can be used to compare a
random application of transformations against our opti-
mizer, see the difference between these results and the
one in Section 6.1.

Table 3 presents the results in terms of wASR of the
transferability experiment in the untargeted case, together
with the average wASR and the standard deviation for
the random baseline. Table 4 presents the results for the
transferability experiment in the targeted scenario.

Transferability Success Rate. When considering the un-
targeted scenario, the TSR values indicate that adversar-
ial examples generated against PalmTree and BinFinder
are the most transferable to other models, with TSR
values of 73.35% and 70.65% respectively. We attribute
these results to the transformations applied when attacking
PalmTree and BinFinder. In these cases, SA and DBA
are the most used transformations. These two modify
most of the features considered by the target models
(namely, the content and the topology of the CFG). We
will further discuss this aspect in the next section where
we will peruse the frequency of transformations applied
against each model. Finally, all the transferred examples
demonstrate higher effectiveness when compared to the
random baseline, with an average TSR of 62.12% vs
50.22% respectively.

In the targeted scenario, the TSR results show that
adversarial examples transfer less effectively compared to
those from the untargeted case. This is expected, given
that targeted attacks are generally less effective than untar-
geted ones, as discussed in Section 6.1. Nevertheless, the
transferred examples outperform those produced by the
random baseline. Finally, similar to the untargeted case,
adversarial examples generated against PalmTree remain
the most effective, with a TSR of 10.95%.

TABLE 4: Transferability matrix for the targeted attack case, considering |P | = 128 and K = 10. In the rows, we
indicate the model for which the adversarial examples were created, and in the columns, the model on which the
examples are tested. Each value represents the wASR.

Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree TSR
Gemini ■ 10.80 10.05 7.62 9.03 10.10 8.08 8.04 9.10
GMN 10.80 ■ 9.57 7.83 11.72 11.05 7.92 10.30 9.88
ZEEK 6.35 7.78 ■ 6.93 10.49 11.50 6.68 6.56 8.04

BinFinder 5.61 5.96 9.52 ■ 9.57 10.02 7.79 6.38 7.84
SAFE 8.65 9.93 10.47 8.10 ■ 12.0 12.28 9.92 10.19
jTrans 8.20 8.88 8.85 7.52 12.3 ■ 10.50 8.47 9.25
Trex 7.70 9.53 8.97 7.47 16.70 13.60 ■ 11.14 10.73

PalmTree 10.20 13.38 7.31 9.49 11.72 11.40 13.18 ■ 10.95
VR 8.22 9.47 9.25 7.85 11.65 11.38 9.49 8.69 ■

random 6.65± 0.11 6.73± 0.22 8.67± 0.24 7.26± 0.03 8.57± 0.09 9.89± 0.10 6.38± 0.32 6.09± 0.08 7.53

Vulnerability Rate. Interestingly, the VR results show
that BinFinder stands out as the most robust model, with
a lower VR of 22.81%. We believe that adversarial exam-
ples targeting BinFinder must possess unique features that
are not present in those generated against other models.
We will further discuss this insight in the next section.
Surprisingly, ZEEK is the least robust model against trans-
ferred adversarial examples, with a VR value of 83.49%.
Generally, transferred examples are more effective than
those generated using the random baseline, except Gemini,
where the corresponding VR value is comparable to the
wASR achieved with the random baseline.

In the targeted scenario, all models perform similarly,
with BinFinder being the most robust (VR of 7.85%) and
SAFE the least (VR of 11.65%). Despite these low values,
transferred examples still outperform the random baseline.

Key takeaway. The transferability of adversarial
examples across models is more effective in the
untargeted context than in the targeted scenario.
Additionally, the distribution of applied transfor-
mations directly affects the success of transferring
an adversarial example to another model.

6.3. RQ3: Common Model Behaviors

In this section, we discuss whether or not an adversar-
ial example can reveal common behaviors that the model
applies when analyzing binary functions.

6.3.1. Distribution of Applied Transformations. Fig-
ure 7 shows the distribution of applied transformations
across the various models together with the results in
average in the untargeted scenario when querying a pool of
128 functions. The results are calculated by considering,
for each model, only the adversarial examples that succeed
according to the ASR@4 metric.

Looking at the average results, it is evident that SA and
DBA are the transformations that most contribute to the
success of adversarial examples, being applied in 83.28%
of the time. In contrast, IR, an in-place transformation that
neither alters the CFG nor introduces new instructions, is
the least applied.

Our attack procedure can identify key aspects of the
target model, particularly the target architecture and the
function representation strategy.

As shown in Figure 7, neither Gemini nor GMN are
affected by IR. This is reasonable, as both models utilize
a GNN architecture that does not consider the position of
the single instructions. In contrast, our strategy primarily

GEM
INI

GMN
ZEE

K

BINFIN
DER

SA
FE

JTR
ANS

TR
EX

PA
LM

TR
EE AV

G

SA

DBA

NS

IR

35.6 50.51 44.24 23.68 54.37 34.94 54.49 70.29 46.02

48.43 42.03 51.72 76.31 15.14 28.34 15.99 20.14 37.26

15.96 7.43 3.21 0.0 14.04 13.86 13.67 7.74 9.49

0.0 0.03 0.83 0.01 16.45 22.85 15.85 1.82 7.23

Figure 7: Distribution of applied transformations in the
untargeted scenario, with K = 10, λ = 0 and querying
a pool P of 128 functions. The AVG column shows the
average distribution across the various models.

focuses on transformations that either insert new nodes
or new instructions. Specifically, when targeting Gemini,
DBA is the most common choice, as it introduces both
new instructions and new nodes into the CFG.

When moving to models that use instruction-based
function representations (i.e., ZEEK and BinFinder), SA
and DBA become the most frequently applied transforma-
tions. This is due to both techniques adding new strands
to the function’s body.

SAFE along with jTrans and Trex, utilize architectures
that consider the position of instructions within a function.
As a result, IR is chosen more often compared to its usage
in the previously mentioned models. It is interesting to
note that the distribution of percentages against jTrans is
more balanced. This reflects the fact that jTrans accounts
for both the instructions and their positions within the
function, as well as the CFG nodes, with jump instructions
being modeled differently from other instructions.

Although PalmTree is built on an LSTM architecture
similar to SAFE, SA is chosen significantly more often
in this case (70.29% vs 54.37%), whereas IR is rarely
applied, unlike when attacking SAFE. We believe this
is due to the more sophisticated instruction embedding
technique implemented by PalmTree, which causes our
attack to focus more on transformations that insert new
instructions rather than the ones manipulating the CFG or
swapping existing instructions.

We emphasize that SA and DBA are universal trans-
formations capable of modifying nearly all the features
considered by the target models. This is evidenced not
only by the previously discussed percentages but also by
the intrinsic nature of these two transformations, which
add new nodes and instructions to the modified function.

TABLE 5: Untargeted and Targeted attack at K = 10 with transformations applied individually, considering |P | = 128
and λ = 0. The ∆% value represents the percentage improvement in terms of wASR achieved by considering all
transformations (ALL) compared to applying each transformation in isolation.

Models
Gemini SAFE jTrans AVG

ALL IR NS DBA SA ALL IR NS DBA SA ALL IR NS DBA SA ALL IR NS DBA SA

UNTARGETED
Recall post attack 0.07 0.71 0.32 0.07 0.07 0.02 0.93 0.79 0.27 0.01 0.04 0.85 0.57 0.22 0.02 0.04 0.83 0.56 0.19 0.03

wASR 92.99 30.08 68.24 92.97 92.16 98.30 7.58 30.35 73.47 98.72 96.0 14.67 43.34 78.29 97.63 95.76 17.44 47.31 88.39 96.17
∆% ■ 67.65 26.62 0.02 0.89 ■ 92.29 69.13 25.26 -0.43 ■ 84.72 43.34 18.45 -1.70 ■ 81.79 50.60 7.70 -0.43

TARGETED wASR 48.25 7.61 13.23 38.48 28.16 64.80 7.52 11.95 29.57 50.45 45.25 7.73 12.49 28.76 33.59 52.77 7.62 12.56 32.27 37.40
∆% ■ 84.23 72.58 20.25 41.64 ■ 88.40 81.56 54.37 22.15 ■ 82.92 72.40 36.44 25.77 ■ 85.56 76.20 38.85 29.17

Consequently, this explains why the adversarial examples
generated against PalmTree and BinFinder transfer most
effectively to the other models, as demonstrated by the
TSR results discussed in the previous section.

Key takeaway. The architecture of the target model
and its function representation strategy signifi-
cantly affect the type of transformation selected
by our attack strategy. Specifically, transformations
affecting the CFG are predominant when attacking
models considering the CFG, while transformations
inserting new instructions or altering their order
are predominant when targeting models that do not
consider the CFG topology.

6.3.2. Transformations in Isolation. We now analyze
the impact of individual transformations, focusing on
three representative models—Gemini, SAFE, and jTrans
—selected from the considered DNN architectures. For
this evaluation, we run our greedy optimization strategy
disabling all transformations but the one tested. To en-
sure a fair comparison, the number of candidates per
iteration tested in this evaluation matches the number of
candidates for the corresponding transformation in the
main approach. For example, if transformation IR has 50
candidates per iteration in the main approach, the same
number is used when evaluating IR alone.

Table 5 presents the results for the untargeted and
targeted attacks performed considering the transformations
in isolation. These confirm the findings from Section 6.3.1.
Specifically, in the untargeted scenario, DBA and SA,
the most frequent transformations for Gemini SAFE, and
jTrans respectively, are also the most effective when used
in isolation to target these models. The ∆% measure,
which represents the percentage improvement in wASR
when combining transformations compared to applying
each transformation individually, is −0.43 on SAFE and
−1.70 on jTrans. This means that when considering SA
alone, we can obtain results comparable to the main
approach in terms of wASR. The results in the targeted
scenario confirm the effectiveness of DBA and SA in
attacking the considered models. However, as indicated by
the ∆% values, the transformations alone are insufficient
to achieve the same results as when they are combined.

6.3.3. Efficiency Analysis. We analyze our attack’s effi-
ciency by comparing the average time needed to generate
adversarial examples using different transformations, both
individually and combined.

We observed that the execution time remains consis-
tent between targeted and untargeted attacks since both
run for a fixed number of iterations. Therefore, we focus
only on the untargeted case. The main time factors in our

attack are identifying perturbation positions, the number
of candidate adversarial examples tested per iteration, and
the overhead from binary function similarity calculations.

When using all transformations, the average execution
time on Gemini, SAFE, and jTrans is 25.55±2.67 minutes,
indicating comparable generation time across models, with
the procedure being more efficient against Gemini (taking
21.82 minutes in average) and least efficient against SAFE
(taking 27.91 minutes in average). Specifically, one itera-
tion takes on average 50.12± 6.03 seconds.

When applied in isolation, transformations exhibit
varying execution times. IR is the most efficient, taking
1.77 ± 0.39 minutes on average overall and 3.15 ± 1.42
seconds per iteration, while DBA is the least efficient,
taking 17.17 ± 4.65 minutes overall and 34.07 ± 9.80
seconds per iteration.

6.3.4. Qualitative Analysis. Figure 8 presents a compar-
ison between the CFGs of the original query function
fQ (shown in Figure 8(a)) and its adversarial versions
generated after an untargeted attack with λ = 0 on three
models: Gemini (Figure 8(b)), SAFE (Figure 8(c)), and
jTrans (Figure 8(d)).

The sequence of transformations applied to generate
the adversarial example in Figure 8(b) demonstrates that
Gemini considers both the CFG topology and the indi-
vidual instructions, as noted in the previous Section. A
manual analysis of the adversarial example shows that the
greedy optimizer typically first alters the topology with a
combination of DBA and NS transformations, followed
by adding new instructions using SA.

The adversarial example in Figure 8(c) shows that,
when attacking SAFE, most modifications are focused
around the prologue of fQ. Specifically, the function’s
entry point is modified twice: first, by adding new instruc-
tions through the SA transformation, and then by splitting
the final portion of the block with NS. Interestingly, one
of the neighbors of the entry point is also modified using
NS. This aligns with what has been observed in [45],
which shows that SAFE usually focuses its analysis on
functions’ prologue.

Figure 8(d) shows the adversarial function fadv gen-
erated from fQ when targeting jTrans. As noted in the
previous section, the distribution of the different trans-
formations is relatively balanced. Like SAFE, the attack
strategy focuses on the entry point, applying several trans-
formations that add both new nodes and instructions.

The analysis of single nodes reveals how the greedy
procedure tailors its modifications based on the target
model. For the node shown in gray, when targeting Gem-
ini, the modification involves adding a strand and splitting
the final part using NS. In contrast, for SAFE, the original
instructions are spread across five new nodes, includ-
ing a dead branch with additional instructions, created

<latexit sha1_base64="61oDl7jVCfUha7eLAtJixi4KOMk=">AAACGHicbVC7TsNAEDzzDOEVoKQ5kSCFJrIjBBQUSDSUQSKAFFvR+rIJp5wfulsjkOUf4BP4Clqo6BAtHQX/gm1S8JpmRzO72t3xYyUN2fa7NTU9Mzs3X1moLi4tr6zW1tbPTZRogV0RqUhf+mBQyRC7JEnhZawRAl/hhT8+LvyLa9RGRuEZ3cboBTAK5VAKoFzq1xou4Q35w7QJOxlvuAHQlaS0rLk67J9mWaNfq9stuwT/S5wJqbMJOv3ahzuIRBJgSEKBMT3HjslLQZMUCrOqmxiMQYxhhL2chhCg8dLym4xvJwYo4jFqLhUvRfw+kUJgzG3g553Flea3V4j/eb2EhgdeKsM4IQxFsYikwnKREVrmMSEfSI1EUFyOXIZcgAYi1JKDELmY5LlV8zyc39//JeftlrPX2j1t148OJ8lU2CbbYk3msH12xE5Yh3WZYHfsgT2yJ+veerZerNev1ilrMrPBfsB6+wSgZqBL</latexit>

(a) fQ
<latexit sha1_base64="qxKV86uel1sKzt3eHqYlKSJSqRw=">AAACK3icbVDBbtNAEF0XKCHQYuDIZUWCVC6RXSHaA4dIPZRjKzVNpCSyxptxOup6be2Oo0aWP4VP4Ct6hVNPIDj2P2qHIEHDO719b0az78W5JsdB8N3bevDw0fbj1pP202c7u8/9Fy/PXVZYhQOV6cyOYnCoyeCAiTWOcouQxhqH8eVR4w8XaB1l5oyXOU5TmBtKSAHXUuQfTBivOE7KvfhdJbuTFPiifiVRCbNFVXXlHx/mQMaxPMaUDFWR3wl6wQpyk4Rr0hFrnET+r8ksU0WKhpUG58ZhkPO0BMukNFbtSeEwB3UJcxzX1ECKblquAlbybeGAM5mjlaTlSsS/N0pInVumcT3ZBHD3vUb8nzcuODmclmTygtGo5hCTxtUhpyzVzaGckUVmaH6OkoxUYIEZLUlQqhaLusp23Ud4P/0mOd/vhR9670/3O/2P62Za4rV4I/ZEKA5EX3wSJ2IglPgsrsVX8c374t14P7yfv0e3vPXOK/EPvNs7OAWocg==</latexit>

(b) fadv against Gemini

<latexit sha1_base64="JyWk6Pnjypzkk2q3z093Re0d1Ok=">AAACKXicbVC7TsNAEDzzJrwClDQnAhI0kY14FRRBCEQJggBSEkXryyacOJ+tuzUisvwlfAJfQQsVHSBR8SPYIUi8ppqd2dXujh8pacl1X5yBwaHhkdGx8cLE5NT0THF27syGsRFYFaEKzYUPFpXUWCVJCi8igxD4Cs/9q73cP79GY2WoT6kbYSOAjpZtKYAyqVncqBPekN9OVsRqypfqAdBlVrWbCbSu03SJf/nQAakt8ZPdg/20WSy5ZbcH/pd4fVJifRw1i2/1VijiADUJBdbWPDeiRgKGpFCYFuqxxQjEFXSwllENAdpG0nsv5cuxBQp5hIZLxXsifp9IILC2G/hZZ36+/e3l4n9eLab2diOROooJtcgXkVTYW2SFkVluyFvSIBHklyOXmgswQIRGchAiE+MsyEKWh/f7+7/kbK3sbZbXj9dKlZ1+MmNsgS2yFeaxLVZhh+yIVZlgt+yePbBH5855cp6d18/WAac/M89+wHn/ANu9pyU=</latexit>

(c) fadv against SAFE
<latexit sha1_base64="p7pvRecA0X87DftAJZfJmaCqrB4=">AAACK3icbVC7TsNAEDzzDOEVoKQ5EZCgiWyEgIIiEg0lSOQhJVG0vmzCwfls3a0RyPKn8Al8BS1UVCAo+Q/sECQgTDU3s6u9GT9S0pLrvjgTk1PTM7OFueL8wuLScmlltW7D2AisiVCFpumDRSU11kiSwmZkEAJfYcO/Os79xjUaK0N9TrcRdgIYaNmXAiiTuqWDNuEN+f1ku7eT8s12AHSRvfrdBHrXabrJv30YgNSW+OW5AW3TbqnsVtwh+DjxRqTMRjjtlt7bvVDEAWoSCqxteW5EnQQMSaEwLbZjixGIKxhgK6MaArSdZBgw5VuxBQp5hIZLxYci/txIILD2NvCzyTyA/evl4n9eK6b+YSeROooJtcgPkVQ4PGSFkVlzyHvSIBHkP0cuNRdggAiN5CBEJsZZlcWsD+9v+nFS3614+5W9s91y9WjUTIGtsw22zTx2wKrshJ2yGhPsjj2wR/bk3DvPzqvz9jU64Yx21tgvOB+fYveojQ==</latexit>

(d) fadv against jTrans

Figure 8: CFGs of the three binary functions in case of untargeted attack with λ = 0 against Gemini, SAFE, and
jTrans. (a) shows the CFG of fQ, while (b), (c), and (d) show the CFGs of the adversarial fadv targeting Gemini,
SAFE, and jTrans respectively. The red rectangle marks the function’s entry point; purple , green , and brown blocks
indicate the use of SA, NS, and DBA, respectively. Dotted rectangles highlight how instructions from a block in fQ
are distributed across multiple blocks in fadv after the attack.

through a combination of NS and DBA. When attacking
jTrans, the approach resembles the one used for SAFE,
but applies NS more frequently. This last observation is
expected because, as outlined in the previous section,
jTrans indirectly accounts for the CFG of a function by
modeling jump instructions differently than other types of
instructions. The node in blue remains mostly unchanged
when targeting SAFE but undergoes similar modifications
when targeting both Gemini and jTrans.

Key takeaway. The qualitative analysis confirms
the findings from the distribution of applied trans-
formations. Moreover, it uncovers hidden aspects
of the target models, such as the tendency of certain
models to concentrate on the prologue of functions.

6.4. Non-ML Approaches

In this section, we assess the robustness of non-ML
methods for comparing binary functions. For this evalua-
tion, we consider:

• GSIZE. A simple approach that compares two func-
tions based on the number of basic blocks.

• GEDIT. A simple approach that compares the CFGs
of two functions using an approximated labeled edit
distance measure [19] (i.e., the number of changes in
terms of nodes and edges edits to transform a source
CFG into a target one).

• Catalog13. This approach uses fuzzy hashing, di-
rectly leveraging raw binary information. Specifi-
cally, it applies MinHash [7] to encode groups of four
consecutive function bytes into a fixed-size signature,
on which similarity is computed using Jaccard.

3. https://www.xorpd.net/pages/fcatalog.html

We excluded other approaches, such as PSS [4] and
BinDiff [18], which operate at the program level rather
than the function level, as they fall outside the scope of
our threat model.

TABLE 6: Untargeted and Targeted attacks against non-
ML approaches, considering K = 10, |P | = 128, and
λ = 0.

Untargeted Targeted
GSIZE GEDIT Catalog1 AVG GSIZE GEDIT Catalog1 AVG

wASR 82.77 81.59 40.02 68.13 27.17 18.65 42.85 29.56
Recall pre attack 0.58 0.49 0.69 0.59 ■ ■ ■ ■
Recall post attack 0.17 0.18 0.60 0.32 ■ ■ ■ ■

@1

INIT 79.92 84.85 64.79 76.52 18.05 26.41 46.22 30.23
ASR 91.41 87.96 53.52 77.63 47.16 25.80 73.71 48.89

M-Instrs 108.08 4.26 94.87 69.07 35.91 11.68 55.64 34.41
M-Nodes 40.60 2.0 5.60 16.07 14.16 3.23 1.94 6.44

@2

INIT 62.34 77.83 44.57 61.58 10.07 17.47 22.41 16.65
ASR 87.31 86.66 50.0 74.66 33.40 18.98 52.29 34.89

M-Instrs 111.79 4.25 95.82 70.62 44.65 15.67 63.32 41.21
M-Nodes 41.93 0 5.55 15.83 17.50 4.30 2.24 8.01

@3

INIT 25.17 43.33 15.29 27.93 3.19 13.55 12.05 9.60
ASR 80.22 81.95 36.82 66.33 17.45 15.36 28.49 20.43

M-Instrs 117.77 4.27 102.15 74.73 61.18 19.19 67.59 49.32
M-Nodes 43.94 2.0 5.15 17.03 23.90 5.26 2.57 10.58

@4

INIT 0 0 0 0 1.40 12.15 8.86 7.47
ASR 72.13 69.81 19.72 53.89 10.67 14.46 16.93 14.02

M-Instrs 127.10 4.27 109.67 80.35 75.16 20.39 75.81 57.12
M-Nodes 47.23 2.0 5.07 18.10 29.18 5.59 2.76 12.51

Table 6 presents the results for the untargeted and
targeted attacks against the three considered approaches.
For the untargeted scenario, it is evident that graph-based
approaches are not robust against our strategy, with a
wASR of 82.77% for GSIZE and 81.59% for GEDIT.
When moving to Catalog1, this presents better robust-
ness compared to the other considered approaches, with
a wASR of 40.02%. In the targeted scenario, all the
considered approaches exhibit greater robustness to our
attack compared to DNN-based solutions. Specifically,
the average wASR against non-ML methods is 29.56%
(compared to 57.06% for DNN-based solutions), with
Catalog1 being the least robust (42.85%) and GEDIT the
most robust (18.65%).

The previous results highlight the better robustness
of non-ML approaches compared to DNN-based ones
against our attack. However, it is worth noting that non-

https://www.xorpd.net/pages/fcatalog.html

ML solutions present lower Recall pre attack values,
showing poor performance on clean data.

The poor attack performance in the targeted case
against GSIZE and GEDIT is due to the fact that our
transformations cannot remove nodes from the CFG. As a
result, when the target function has fewer nodes than the
query, the attack fails. This also highlights a significant
limitation of these similarity methods, as they struggle to
assign high similarity scores to functions that are seman-
tically similar but topologically different.

Regarding Catalog1, its robustness in the targeted case
is comparable to that of DNN-based systems; however, it
shows remarkable robustness in the untargeted case. Prob-
ably the set of our transformations is unable to effectively
modify the representation used by Catalog1. The results
@1, where INIT@1 is higher than ASR@1, highlight that,
for certain queries fQ, at least one of the variants initially
ranked outside the top-K is ranked in the top-K of fadv.
This implies that Catalog1 fails to assign high similarity
scores to semantically similar functions and that our attack
indirectly improves the performance of the system on a
limited number of clean data.

7. Related Works

In this section, we first discuss techniques for gen-
erating adversarial examples against image classifiers and
NLP models; then, we move to approaches targeting mod-
els for source code analysis. Finally, we discuss attacks
against malware detectors and models for binary analysis.

7.1. Attacking Image Classifiers and NLP Models

Adversarial attacks were first introduced against mod-
els for image classification, with early works [5], [10],
[20], [43] providing white-box, gradient-based methods
that add minimal perturbations to fool models with high
confidence. Chen et al. [11] propose various black-box
decision-based attacks against image classifiers involving
the estimation of gradient direction.

Jia et al. [22] attack reading comprehension models by
introducing sentences that can deceive the target models
while maintaining the original semantics of the paragraph.
More recently, the solutions in [25], [27] proposed to
attack NLP models by finding replacements of words com-
posing the input sequence, using BERT-based strategies.

7.2. Attacking Models for Source Code Analysis

Methods for attacking models for source code anal-
ysis are mainly based on applying semantics-preserving
perturbations at the source code level, thus having limited
applicability in the binary function similarity context.

Yefet et al. [47] propose a white-box approach that,
using a gradient-driven method, iteratively changes the
names of variables defined within a function in all
their occurrences, until a misclassification occurs. Differ-
ently, Zhang et al. [49] target code clone detectors us-
ing semantics-preserving transformations, combined using
common optimization heuristics, alongside a reinforce-
ment learning-based approach for searching clones that
could evade the detection.

7.3. Attacking Models for Binary Code Analysis

The solution proposed by Pierazzi et al. [39] targets
Android malware classifiers and is based on software
transplantation. Here, benign snippets of code that can
trigger the classifier features are injected into the mal-
ware sample to cause a misclassification using a gradient-
guided approach. Moreover, the snippets are injected into
portions of code that are never executed, to guarantee the
preservation of the semantics.

Lucas et al. [30] attack malware classifiers based on
raw bytes. Their solution is based on combining different
semantics-preserving perturbations both in a black-box
and a white-box context. The proposed transformations
are a subset of ours, as they include IR and NS; however,
while these transformations show clear effectiveness when
targeting malware classifiers (and also commercial solu-
tions), they may show poor performance when targeting
binary function similarity models; indeed, it is evident
from our results that a crucial point in attacking binary
similarity models is the need of inserting new instructions
into the function being modified.

FuncFooler [21] is a recent unpublished work targeting
binary function similarity models in the context of func-
tion search. It consists of an instruction-insertion strategy
to modify a binary function at a set of fixed locations
determined in advance; to guarantee semantics preser-
vation, possible side effects are corrected a posteriori.
The set of possible instructions is computed considering
the instructions of the functions in the pool. Differently
from our approach, FuncFooler explores only one class
of transformations (which can be considered a subset of
SA where a single instruction is inserted at each step),
without altering the topology of the CFG. Furthermore, it
only studies untargeted attacks.

Capozzi et al. [9] is a recent unpublished work propos-
ing two solutions targeting a subset of the binary func-
tion similarity models we considered. Their black-box
approach consists of a greedy solution, feasible both in
a targeted and untargeted context, that iteratively inserts
new instructions into dead branches, whose locations are
fixed in advance. Differently from FuncFooler [21], the
set of possible instructions is dynamically updated using
a heuristic based on instruction embeddings. The proposed
white-box attack substitutes the aforementioned heuristic
with a gradient-guided instruction insertion strategy. We
highlight that [9] relies on a set of transformations that
is strictly a subset of ours (as [9] uses only DBA with
a single instruction added) and it tests its approach only
against three models (namely, Gemini, SAFE, and GMN).

PELICAN [50] is a novel white-box attack that lever-
ages natural backdoors of attacked models to identify
instructions that, once inserted into functions, can induce
misclassification. This attack has been tested against mod-
els for different binary analysis tasks, including function
naming, compiler provenance, and binary function similar-
ity. In the context of the latter, the proposed methodology
has only been tested against three models—specifically,
Gemini, SAFE, and Trex.

We emphasize that the last two solutions differ sig-
nificantly from our work. Firstly, they do not address
the function search task. Specifically, Capozzi et al. [9]
target the similarity function implemented by the target

model, whereas PELICAN [50] focuses on attacking the
loss function implemented by the target model. Another
key difference lies in the use of variants of the query
function during the optimization process, which is not the
case in either of the other two approaches.

8. Discussion

We now discuss the practical impacts of our study and
the limitations of our evaluation setting.

8.1. Practical Impacts

As outlined in Section 1, binary function similarity
systems play a crucial role in various security-sensitive
scenarios, including vulnerability detection, plagiarism
identification, and malware analysis. These systems help
automate the process of comparing binary functions, mak-
ing it easier to identify code reuse, detect security flaws,
and uncover malicious behaviors. In practical scenarios,
such systems are integrated into tools used by reverse
engineers. Notable examples include plugins such as
YARASAFE4 and BinaryAI5. These plugins facilitate the
use of traditional reverse engineering tools by providing
automated capabilities that can reduce manual effort.

Our threat model represents a practical scenario where
a remotely deployed binary function similarity system
operates as a black-box model, providing only similarity
scores. While this represents a worst-case assumption for
the attacker, our findings reveal that these systems remain
vulnerable to our attack, which is relatively simple to im-
plement in practical contexts. This applies to both targeted
(e.g., disguising malicious code as benign) and untargeted
(e.g., hiding vulnerable or plagiarized functions) attacks,
posing serious threats in real-world scenarios, even for
models explicitly designed to handle obfuscated functions,
such as BinFinder [40] and Trex [38].

8.2. Limitations

We examine the limitations of our work, focus-
ing on the dataset and transformations used. Our
dataset is smaller than benchmarks like BinaryCorp [44],
BinKit [24], and those used by Marcelli et al. [31].
However, these benchmarks are typically used to evaluate
the performance of binary function similarity systems on
clean data. Due to the computational cost of generating
adversarial examples (see Section 6.3.3), using such large
datasets is impractical in our scenario. However, the num-
ber of open-source projects used to generate our codebase
aligns with standard practices in the field, as prior stud-
ies [29], [33], [38], [40] typically extract functions from
1 to 10 projects.

As most binary function similarity systems are trained
on ELF amd64 functions compiled from C code, we
limited our evaluation to this setting. However, our attack
is architecture-agnostic and can be extended to other ISAs
by adapting the transformations. We expect our findings to
generalize, as the attack does not depend on ISA-specific
traits. Furthermore, variations in source code languages

4. https://github.com/lucamassarelli/yarasafe
5. https://github.com/binaryai/plugins

may alter assembly representations, and if models are not
trained on such binaries, their performance may degrade,
potentially increasing the ASR. With respect to compilers,
binary function similarity systems are typically trained
considering multiple compilers as well as different ver-
sions of the same compiler. While our dataset accounts
for the first aspect, we did not explore the latter. How-
ever, [31] observed a slight performance drop on clean
data when comparing functions compiled with different
versions of the same compiler, suggesting that the ASR
would likely increase in such scenarios.

Finally, our set of transformations may have little
to no effect against symbolic execution-based methods.
However, these methods are often impractical due to their
inefficiency; indeed, comparing binary functions using
symbolic execution may lead to path explosion, making it
impractical in real-world scenarios.

9. Conclusions and Future Works

In this paper, we presented the first large-scale analysis
of the robustness of binary function similarity models
against adversarial attacks highlighting the need for a
trade-off between performance and robustness.

We demonstrated that a simple greedy strategy, when
enriched with a wide set of transformations, can mount
untargeted attacks with very high success rates on all
considered models, particularly those showing top per-
formance on clean data. Conversely, models that initially
perform poorly seem to be more resistant to adversarial
examples. On the targeted front, our attacks performed
slightly worse, but they were still successful in more than
half of the instances considered.

We investigated several additional aspects. First, we
showed that adversarial examples transfer across models,
with a significantly higher success in the untargeted case
rather than the targeted. Secondly, we demonstrated that
the set of transformations we considered was effective
in modifying most of the key features considered by the
target models, with two transformations making a partic-
ularly strong contribution to the success of the attack. Fi-
nally, manual analysis of adversarial examples uncovered
hidden behaviors in the models, revealing that they focus
their analysis on specific portions of the functions.

Our research opens several new research avenues,
particularly in the context of defense strategies. Rather
than focusing solely on adversarial training— which may
enhance model robustness against our attack but does
not guarantee protection against zero-day threats— we
argue that greater emphasis should be placed on proposing
inherently robust function representation methods.

Acknowledgments

This work was partially supported by the Italian
MUR National Recovery and Resilience Plan funded
by the European Union - NextGenerationEU through
projects SERICS (PE00000014) and Rome Technopole
(ECS00000024).

References

[1] Saed Alrabaee, Paria Shirani, Lingyu Wang, and Mourad Deb-
babi. Sigma: A semantic integrated graph matching approach for

https://github.com/lucamassarelli/yarasafe
https://github.com/binaryai/plugins

identifying reused functions in binary code. Digital Investigation,
12:S61–S71, 2015.

[2] Fiorella Artuso, Giuseppe Antonio Di Luna, Luca Massarelli,
and Leonardo Querzoni. In nomine function: Naming func-
tions in stripped binaries with neural networks. arXiv preprint
arXiv:1912.07946, 2019.

[3] Fiorella Artuso, Marco Mormando, Giuseppe Antonio Di Luna,
and Leonardo Querzoni. Binbert: Binary code understanding with
a fine-tunable and execution-aware transformer. IEEE Transactions
on Dependable and Secure Computing, pages 1–18, 2024.

[4] Tristan Benoit, Jean-Yves Marion, and Sébastien Bardin. Scalable
program clone search through spectral analysis. In Proceedings
of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
(ESEC/FSE ’23), pages 808–820. ACM, 2023.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,
Nedim Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli.
Evasion Attacks against Machine Learning at Test Time. In
Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD ’13), volume
8190, pages 387–402. Springer, 2013.

[6] Battista Biggio and Fabio Roli. Wild patterns: Ten years after
the rise of adversarial machine learning. In Pattern Recognition,
volume 84, pages 317–331, 2018.

[7] Andrei Z Broder. On the resemblance and containment of doc-
uments. In Proceedings of the Compression and Complexity of
SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE,
1997.

[8] Ying Cao, Ruigang Liang, Kai Chen, and Peiwei Hu. Boosting
neural networks to decompile optimized binaries. In Proceedings
of the 38th Annual Computer Security Applications Conference
(ACSAC ’22), pages 508–518. ACM, 2022.

[9] Gianluca Capozzi, Daniele Cono D’Elia, Giuseppe Antonio
Di Luna, and Leonardo Querzoni. Adversarial attacks against
binary similarity systems. arXiv preprint arXiv:2303.11143, 2023.

[10] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In Proceedings of the 38th IEEE
Symposium on Security and Privacy (SP ’17), pages 39–57. IEEE,
2017.

[11] Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. Hop-
skipjumpattack: A query-efficient decision-based attack. In Pro-
ceeedings of the 41st IEEE Symposium on Security and Privacy
(SP ’20), pages 1277–1294. IEEE, 2020.

[12] Hanjun Dai, Bo Dai, and Le Song. Discriminative Embeddings of
Latent Variable Models for Structured Data. In Proceedings of the
33rd International Conference on Machine Learning (ICML ’16),
volume 48, pages 2702–2711, 2016.

[13] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity
of binaries. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’16), pages 266–280, 2016.

[14] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli,
and Alessandro Armando. Functionality-preserving black-box op-
timization of adversarial windows malware. IEEE Transactions on
Information Forensics and Security, 16:3469–3478, 2021.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

[16] Steven H.H. Ding, Benjamin C.M. Fung, and Philippe Charland.
Asm2Vec: Boosting static representation robustness for binary
clone search against code obfuscation and compiler optimization.
In Proceedings of the 40th IEEE Symposium on Security and
Privacy (SP ’19), pages 472–489. IEEE, 2019.

[17] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. Deep-
bindiff: Learning program-wide code representations for binary
diffing. In Proceedings of the 27th Annual Network and Distributed
System Security Symposium NDSS ’20. The Internet Society, 2020.

[18] Thomas Dullien and Rolf Rolles. Graph-based comparison of
executable objects (English version). In Proceedings of the Sym-
posium sur la sécurité des technologies de l’information et des
communications (SSTIC ’05), page 3, 2005.

[19] Andreas Fischer, Kaspar Riesen, and Horst Bunke. Improved
quadratic time approximation of graph edit distance by combining
hausdorff matching and greedy assignment. Pattern Recognition
Letters, 87:55–62, 2017.

[20] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[21] Lichen Jia, Bowen Tang, Chenggang Wu, Zhe Wang, Zi-
han Jiang, Yuanming Lai, Yan Kang, Ning Liu, and Jingfeng
Zhang. Funcfooler: A practical black-box attack against learning-
based binary code similarity detection methods. arXiv preprint
arXiv:2208.14191, 2022.

[22] Robin Jia and Percy Liang. Adversarial Examples for Evaluating
Reading Comprehension Systems. In Proceedings of the 22nd
Conference on Empirical Methods in Natural Language Processing
(EMNLP ’17), pages 2021–2031, 2017.

[23] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. Rendezvous:
A search engine for binary code. In Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR ’13),
pages 329–338, 2013.

[24] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and
Yongdae Kim. Revisiting binary code similarity analysis using
interpretable feature engineering and lessons learned. IEEE Trans-
actions on Software Engineering, 49(4):1661–1682, 2022.

[25] Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett,
Ming-Ting Sun, and Bill Dolan. Contextualized Perturbation for
Textual Adversarial Attack. In Proceedings of the Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT ’21),
pages 5053–5069, 2021.

[26] Juncheng Li, Shuhui Qu, Xinjian Li, Joseph Szurley, J Zico Kolter,
and Florian Metze. Adversarial Music: Real world Audio Ad-
versary against Wake-word Detection System. In Proceedings of
the 32nd Annual Conference on Neural Information Processing
Systems (NeurIPS ’19), pages 11908–11918, 2019.

[27] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng
Qiu. BERT-ATTACK: adversarial attack against BERT using
BERT. In Proceedings of the 25th Conference on Empirical
Methods in Natural Language Processing (EMNLP ’20), pages
6193–6202, 2020.

[28] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: Learning an
assembly language model for instruction embedding. In Pro-
ceedings of the 28th ACM SIGSAC Conference on Computer and
Communications Security (CCS ’21), page 3236–3251, 2021.

[29] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Push-
meet Kohli. Graph matching networks for learning the similarity of
graph structured objects. In Proceedings of the 36th International
Conference on Machine Learning (ICML ’19), pages 3835–3845,
2019.

[30] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K Reiter, and
Saurabh Shintre. Malware Makeover: Breaking ML-based Static
Analysis by Modifying Executable Bytes. In Proceedings of the
16th ACM Asia Conference on Computer and Communications
Security (AsiaCCS ’21), pages 744–758, 2021.

[31] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yan-
ick Fratantonio, Mohamad Mansouri, and Davide Balzarotti. How
Machine Learning Is Solving the Binary Function Similarity Prob-
lem. In Proceedings of the 31st USENIX Security Symposium (SEC
’22), pages 2099–2116. USENIX Association, 2022.

[32] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni,
Leonardo Querzoni, and Roberto Baldoni. Investigating graph
embedding neural networks with unsupervised features extraction
for binary analysis. In Proceedings of the 2nd Workshop on Binary
Analysis Research (BAR), pages 1–11, 2019.

[33] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni,
Leonardo Querzoni, and Roberto Baldoni. Function Representa-
tions for Binary Similarity. IEEE Transactions on Dependable and
Secure Computing, 19(4):2259–2273, 2022.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the 27th Annual Conference
on Neural Information Processing Systems (NeurIPS ’13), pages
3111–3119, 2013.

[35] Radare ORG. Radare2. https://github.com/radareorg/radare2, 2024.

[36] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder.
Probabilistic naming of functions in stripped binaries. In Pro-
ceedings of the 36th Annual Computer Security Applications Con-
ference (ACSAC ’20), page 373–385. ACM, 2020.

[37] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen,
Songchen Yao, David Williams-King, Vikas Ummadisetty, Junfeng
Yang, Baishakhi Ray, and Suman Jana. Stateformer: fine-grained
type recovery from binaries using generative state modeling. In
Proceedings of the 29th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21), pages 690–702. ACM, 2021.

[38] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi
Ray. Learning approximate execution semantics from traces for
binary function similarity. IEEE Transactions on Software Engi-
neering, 49(4):2776–2790, 2023.

[39] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and
Lorenzo Cavallaro. Intriguing properties of adversarial ml attacks
in the problem space. In Proceedings of the 41st IEEE Symposium
on Security and Privacy (SP ’20), pages 1332–1349. IEEE, 2020.

[40] Abdullah Qasem, Mourad Debbabi, Bernard Lebel, and Marthe
Kassouf. Binary function clone search in the presence of code
obfuscation and optimization over multi-cpu architectures. In
Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security (AsiaCCS ’23), page 443–456, 2023.

[41] Noam Shalev and Nimrod Partush. Binary similarity detection
using machine learning. In Proceedings of the 13th Workshop on
Programming Languages and Analysis for Security, pages 42–47,
2018.

[42] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Krügel, and Giovanni Vigna. SOK:
(state of) the art of war: Offensive techniques in binary analysis. In
Proceedings of the 37th IEEE Symposium on Security and Privacy
(SP ’16), pages 138–157. IEEE, 2016.

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[44] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han
Qiu, Jianwei Zhuge, and Chao Zhang. JTrans: Jump-aware trans-
former for binary code similarity detection. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’22), pages 1–13, 2022.

[45] Wai Kin Wong, Huaijin Wang, Zongjie Li, and Shuai Wang.
Binaug: Enhancing binary similarity analysis with low-cost input
repairing. In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, pages 7:1–7:13.
ACM, 2024.

[46] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proceedings of the 24th ACM
SIGSAC Conference on Computer and Communications Security
(CCS ’17), pages 363–376, 2017.

[47] Noam Yefet, Uri Alon, and Eran Yahav. Adversarial examples
for models of code. In Proceedings of the ACM on Programming
Languages (OOPSLA ’20), volume 4, pages 1–30, 2020.

[48] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial
examples: Attacks and defenses for deep learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 30(9):2805–2824,
2019.

[49] Weiwei Zhang, Shengjian Guo, Hongyu Zhang, Yulei Sui, Yinxing
Xue, and Yun Xu. Challenging machine learning-based clone
detectors via semantic-preserving code transformations. IEEE
Transactions on Software Engineering, pages 1–18, 2023.

[50] Zhuo Zhang, Guanhong Tao, Guangyu Shen, Shengwei An, Qi-
uling Xu, Yingqi Liu, Yapeng Ye, Yaoxuan Wu, and Xiangyu
Zhang. PELICAN: exploiting backdoors of naturally trained deep
learning models in binary code analysis. In Proceedings of the
32nd USENIX Security Symposium (SEC ’23), pages 2365–2382.
USENIX Association, 2023.

Appendix A.

Algorithm 1 presents our attack procedure. The first
adversarial example fadv is the query function fQ itself
(line 1). We then initialize the set of candidate strands that
can be inserted into the adversarial function either using
DBA or SA (line 3). Then, during the iterative procedure,
we first identify possible positions to perturb (line 7) and
then enumerate all the possible transformations that can be
applied in the identified positions. Specifically, we apply
a transformation tr at the position pos, for every pair
⟨tr, pos⟩ ∈ TR × POS (lines 8 - 16). We then proceed
to evaluate the objective function defined in Equation 2,
considering the set of candidates CAND and the set of
target variants V (line 17). Finally, we select the new
adversarial example fadv according to the value of ε
(lines 18 - 22) and update the set of candidate strands
(line 24). The final adversarial example fadv (line 26) is,
among all fadv generated at the end of each iteration,
the one that produced the highest value for the objective
function.

https://github.com/radareorg/radare2

Algorithm 1 Greedy Optimization Strategy
Input:

• Query function fQ
• Set of target variants V

Output: Adversarial example fadv
Definitions:

• Maximum number of iterations ∆
• Set of semantics-preserving transformations TR
• randomStrands(): Initialize the set STRANDS with random

strands.
• ir(fadv , pos). Apply the IR transformation to fadv at location

pos. Return a new candidate adversarial example.
• ns(fadv , pos). Apply the NS transformation to fadv at location

pos. Return a new candidate adversarial example.
• dba(fadv , pos). Apply the DBA transformation to fadv at loca-

tion pos. Return a list of |STRANDS| candidate adversarial
examples, where each candidate consists of adding in a dead
branch at position pos within fadv a strand from STRANDS.

• sa(fadv , pos). Apply the SA transformation to fadv at location
pos. Return a list of |STRANDS| candidate adversarial exam-
ples, where each candidate consists of adding at position pos
within fadv a strand from STRANDS.

• evaluate(cands, V). Evaluate the objective function in Equa-
tion 2 considering the possible candidates cands and the set of
target variants V .

• best(advs). Given a set of adversarial examples, return the one
that maximizes the value of Equation 2.

1: fadv ← fQ
2: iter ← 0
3: STRANDS ← randomStrands()
4: advs, POS ← [], []
5: while iter < ∆ do
6: cands← []
7: POS.update()
8: for ⟨tr, pos⟩ ∈ TR× POS do
9: if tr == ‘IR’ then

10: cands.extends(ir(fadv , pos))
11: else if tr == ‘NS’ then
12: cands.extends(ns(fadv , pos))
13: else if tr == ‘DBA’ then
14: cands.extends(dba(fadv , pos))
15: else
16: cands.extends(sa(fadv , pos))

17: objective values← evaluate(cands, V)
18: prob← uniform(0, 1)
19: if prob < ε then
20: fadv ← selectGreedy(objective values)
21: else
22: fadv ← selectRandom(objective values)

23: advs.extends(fadv)
24: STRANDS.update(objective values)
25: iter ← iter + 1
26: return best(advs)

Appendix B.

Below, we present the results of the robustness analy-
sis for the evaluated models, considering various values
of K, P , and λ. Specifically, we set K ∈ {10, 100}
for untargeted attacks and K ∈ {5, 10} for targeted
attacks. Additionally, we consider pools with sizes |P | ∈
{32, 128, 512, 1000} and λ ∈ {0, 0.01, 0.3}.

We report the results for the untargeted case in Ta-
bles 7, 8, 9, 10 and 11, while the ones for the targeted
scenario in Tables 12, 13, 14, and 15.

TABLE 7: Untargeted attack at K = 10 when considering a pool of size 32 with λ ∈ {0, 0.3}. In column AVG we
report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.87 0.87 0.98 0.98 0.92 0.92 0.96 0.96 0.99 0.99 0.94 0.94 0.99 0.99 0.98 0.98 0.95 0.95
Recall post attack 0.15 0.85 0.12 0.90 0.33 0.82 0.12 0.96 0.07 0.97 0.31 0.90 0.14 0.98 0.11 0.97 0.17 0.92

wASR 85.07 15.47 88.05 9.60 66.75 18.14 88.28 3.77 93.15 3.32 69.15 9.98 86.38 2.23 88.78 3.13 83.20 8.20
INIT 34.67 34.67 4.70 4.70 22.26 22.26 9.80 9.80 5.0 5.0 21.0 21.0 2.58 2.58 5.81 5.81 13.23 13.23
ASR 91.18 37.70 97.80 18.50 82.65 39.68 91.80 10.10 96.90 8.75 94.90 28.40 93.04 5.80 93.99 9.22 92.78 19.77

M-Instrs 236.20 9.83 210.59 12.52 198.55 12.35 226.78 7.17 240.06 16.85 134.14 12.63 198.86 16.19 522.43 12.16 245.95 12.46@1

M-Nodes 27.14 1.61 16.87 2.50 24.47 2.04 41.56 0.22 13.66 2.20 16.76 2.03 11.17 1.91 16.70 2.37 21.04 1.86
INIT 14.53 14.53 1.0 1.0 6.96 6.96 3.70 3.70 0.60 0.60 3.80 3.80 0.40 0.40 1.50 1.50 4.06 4.06
ASR 88.78 18.35 95.70 9.90 75.23 20.65 89.70 4.0 95.60 3.22 84.10 10.60 90.46 2.20 92.08 2.61 88.96 8.94

M-Instrs 236.46 10.73 209.58 11.59 194.60 16.41 226.40 5.75 241.03 22.44 136.04 15.97 200.69 20.77 522.57 12.50 245.92 14.52@2

M-Nodes 27.41 1.68 17.01 2.67 24.11 2.31 41.46 0.30 13.65 2.16 17.07 2.49 11.25 1.64 16.80 2.65 21.10 1.99
INIT 3.71 3.71 0.30 0.20 1.03 1.03 0.60 0.60 0.10 0.10 0.0 0.0 0.20 0.20 0.40 0.40 0.79 0.79
ASR 83.47 4.84 86.0 6.30 61.53 8.50 87.0 0.90 91.70 0.91 56.10 0.80 83.40 0.60 86.37 0.60 79.45 2.93

M-Instrs 238.68 10.77 210.40 11.25 188.42 21.77 226.62 12.22 244.53 30.11 142.26 14.50 204.03 17.17 521.36 14.0 247.04 16.47@3

M-Nodes 27.77 2.17 17.45 2.63 22.96 2.77 41.34 0.44 13.63 2.22 17.53 2.75 11.28 2.33 16.83 2.50 21.10 2.23
INIT 0.10 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01
ASR 76.85 1.01 72.70 3.70 47.60 3.74 84.60 0.10 88.40 0.40 41.50 0.10 78.63 0.30 82.67 0.10 71.62 1.18

M-Instrs 241.14 18.10 217.51 12.81 183.15 23.81 226.82 44.0 246.59 26.0 142.61 28.0 207.54 21.33 520.03 35.0 248.17 26.13

K=10

@4

M-Nodes 28.48 4.0 18.31 2.97 21.90 2.76 41.31 4.0 13.61 3.50 18.12 6.0 11.35 3.33 16.78 6.0 21.23 4.07

TABLE 8: Untargeted attack at K = 10 and K = 100 when considering a pool of size 128 with λ ∈ {0, 0.3}. In
column AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.71 0.71 0.94 0.94 0.73 0.73 0.91 0.91 0.94 0.94 0.81 0.81 0.95 0.95 0.90 0.90 0.86 0.86
Recall post attack 0.07 0.65 0.03 0.80 0.05 0.61 0.06 0.9 0.02 0.86 0.04 0.75 0.04 0.92 0.03 0.86 0.04 0.79

wASR 92.99 35.05 97.30 20.47 95.23 39.30 93.80 10.27 98.30 13.51 96.0 25.20 96.17 8.30 96.69 13.80 95.81 20.74
INIT 63.63 63.63 16.10 16.10 61.76 61.76 24.40 24.40 19.40 19.40 51.10 51.10 12.82 12.82 27.66 27.66 34.61 34.61
ASR 96.69 67.50 99.30 35.10 98.06 68.52 95.80 25.80 99.20 31.19 99.40 55.80 97.61 19.40 98.0 33.97 98.01 42.16

M-Instrs 235.07 8.66 214.44 12.17 201.77 9.47 226.76 5.66 237.61 12.09 133.19 9.99 195.51 12.36 524.32 10.56 246.08 10.12@1

M-Nodes 26.98 1.62 16.90 2.26 25.68 1.79 41.73 0.26 13.68 1.95 16.74 1.81 10.99 1.83 16.69 2.01 21.17 1.69
INIT 38.48 38.48 5.90 5.90 35.73 35.73 9.90 9.90 4.90 4.90 24.20 24.20 4.97 4.97 10.62 10.62 16.84 16.84
ASR 95.39 46.70 98.80 23.50 97.26 49.70 94.70 11.50 98.80 14.29 99.20 32.70 97.22 9.60 97.90 17.23 97.41 25.65

M-Instrs 236.42 9.52 214.09 12.03 201.71 11.33 226.78 6.51 238.13 15.94 133.35 12.09 195.75 14.70 524.57 11.58 246.35 11.71@2

M-Nodes 27.12 1.66 16.87 2.43 25.61 1.98 41.67 0.33 13.69 2.01 16.75 1.98 11.01 1.89 16.67 2.17 21.17 1.81
INIT 13.23 13.23 0.80 0.80 9.02 9.02 3.0 3.0 1.50 1.50 1.40 1.40 0.89 0.89 1.20 1.20 3.88 3.88
ASR 91.58 20.60 97.0 13.60 94.52 25.71 93.10 3.50 97.80 6.04 94.80 10.70 95.83 3.0 95.89 3.51 95.06 10.83

M-Instrs 239.26 10.09 212.59 13.16 202.82 16.09 226.88 10.20 239.12 22.12 135.64 15.87 197.18 21.27 523.93 17.77 247.18 15.82@3

M-Nodes 27.28 2.03 16.93 2.79 25.26 2.40 41.59 0.51 13.69 2.45 16.96 2.37 11.05 1.93 16.71 2.86 21.18 2.17
INIT 1.20 1.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.15 0.15
ASR 88.28 5.40 94.10 9.70 91.10 13.26 91.60 0.30 97.40 2.52 90.60 1.60 94.04 1.20 94.99 0.50 92.76 4.31

M-Instrs 241.56 14.85 212.66 12.38 202.76 22.94 226.61 25.67 239.68 29.76 137.8 16.19 199.09 27.33 525.71 28.80 248.23 22.24

K=10

@4

M-Nodes 27.73 2.96 17.18 3.05 25.08 2.96 41.52 2.67 13.70 2.48 17.22 3.0 11.17 2.0 16.76 6.0 21.30 3.14

Recall pre attack 0.99 0.99 1.0 1.0 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Recall post attack 0.53 0.99 0.38 0.97 0.73 0.98 0.32 1.0 0.29 1.0 0.75 0.99 0.55 1.0 0.46 1.0 0.50 0.99

wASR 47.12 1.18 62.25 3.10 26.86 1.67 67.58 0.25 70.60 0.18 24.65 0.85 45.23 0.35 54.16 0.20 49.81 0.97
INIT 2.81 2.81 1.10 1.10 1.71 1.71 0.70 0.70 0.10 0.10 0.80 0.80 0.60 0.60 0.20 0.20 1.0 1.0
ASR 64.13 3.30 90.20 7.80 46.58 4.76 74.30 0.60 83.80 0.70 53.30 2.60 56.36 0.90 70.64 0.70 67.41 2.67

M-Instrs 239.92 10.30 198.86 10.38 184.32 19.09 226.40 3.67 251.10 34.57 138.68 19.96 211.08 13.44 521.46 22.0 246.48 16.68@1

M-Nodes 28.36 2.36 16.48 2.72 22.73 2.26 41.32 0.0 13.57 1.71 18.17 2.46 11.43 2.44 16.93 2.0 21.12 1.99
INIT 1.10 1.10 0.30 0.30 0.57 0.57 0.30 0.30 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.31 0.31
ASR 53.21 1.10 73.0 3.60 33.33 1.52 69.20 0.30 77.10 0.0 30.60 0.80 48.91 0.20 59.42 0.10 55.60 0.95

M-Instrs 236.12 11.91 207.11 9.08 178.44 25.20 226.56 0.0 254.92 - 131.56 19.25 216.62 26.0 520.98 18.0 246.54 15.63@2

M-Nodes 28.85 2.36 17.22 2.72 21.65 2.07 41.12 0.0 13.36 - 18.16 3.25 11.39 3.0 16.99 2.0 21.09 2.20
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.02 0.02
ASR 39.98 0.20 50.30 0.90 18.49 0.20 64.80 0.10 66.0 0.0 8.70 0.0 41.65 0.20 46.99 0.0 42.11 0.20

M-Instrs 239.35 14.50 220.92 10.0 169.91 24.0 226.44 0.0 265.67 - 121.17 - 220.74 26.0 519.55 - 247.97 14.90@3

M-Nodes 30.24 5.0 18.40 3.33 20.27 0.0 40.96 0.0 13.22 - 18.51 - 11.54 3.0 17.52 - 21.33 2.27
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ASR 31.16 0.10 35.5 0.10 9.02 0.20 62.0 0.0 55.50 0.0 6.0 0.0 34.0 0.10 39.58 0.0 34.10 0.06

M-Instrs 238.51 25.0 226.95 6.0 165.33 24.0 225.67 - 267.78 - 121.87 - 224.18 35.0 517.75 - 248.5 22.50

K=100

@4

M-Nodes 31.06 8.0 19.05 4.0 19.95 0.0 40.84 - 13.41 - 18.40 - 11.75 6.0 18.49 - 21.62 4.50

TABLE 9: Untargeted attack at K = 10 adn K = 100 when considering a pool of size 512 with λ ∈ {0, 0.3}. In
column AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.56 0.56 0.86 0.86 0.51 0.51 0.83 0.83 0.84 0.84 0.67 0.67 0.89 0.89 0.79 0.79 0.74 0.74
Recall post attack 0.04 0.49 0.01 0.66 0.02 0.39 0.04 0.82 0.0 0.73 0.01 0.59 0.02 0.83 0.01 0.72 0.02 0.65

wASR 96.27 51.45 99.0 33.65 98.12 60.78 96.33 18.0 99.58 26.86 99.15 41.38 98.43 17.05 99.37 28.33 98.28 34.69
INIT 82.87 82.87 36.40 36.40 84.70 84.70 39.40 39.40 42.60 42.60 73.20 73.20 29.22 29.22 53.15 53.15 55.19 55.19
ASR 98.10 85.30 99.70 57.30 99.09 88.77 97.80 40.20 100.0 54.23 100.0 77.60 99.30 37.50 99.90 61.72 99.24 62.83

M-Instrs 234.18 8.20 215.0 10.44 202.11 8.15 227.07 4.94 236.85 10.03 133.06 8.75 193.39 11.52 522.24 9.54 245.49 8.95@1

M-Nodes 26.95 1.57 16.94 2.05 25.83 1.67 41.80 0.28 13.66 1.78 16.73 1.73 10.88 1.79 16.80 1.84 21.20 1.59
INIT 64.33 64.33 16.10 16.10 72.26 72.26 21.20 21.20 17.40 17.40 48.40 48.40 12.82 12.82 28.63 28.63 35.14 35.14
ASR 97.49 70.80 99.30 39.30 98.86 77.13 96.90 22.70 99.90 33.40 100.0 54.70 98.81 20.80 99.40 38.88 98.83 44.71

M-Instrs 234.41 8.67 214.44 11.80 202.06 8.89 226.96 5.42 236.93 12.24 133.06 10.14 194.03 13.92 522.88 10.58 245.6 10.21@2

M-Nodes 27.0 1.60 16.92 2.27 25.81 1.73 41.79 0.35 13.66 1.92 16.73 1.85 10.91 1.87 16.79 1.95 21.20 1.69
INIT 27.15 27.15 3.40 3.40 34.02 34.02 6.80 6.80 3.50 3.50 12.0 12.0 2.49 2.49 3.90 3.90 11.66 11.66
ASR 95.39 37.70 98.80 22.90 97.60 50.81 95.9 8.10 99.30 13.68 99.10 26.0 98.11 7.50 99.20 10.32 97.92 22.13

M-Instrs 237.11 10.29 213.98 13.19 202.18 11.39 226.92 7.46 237.66 18.51 133.94 13.10 195.07 19.81 523.35 15.97 246.28 13.72@3

M-Nodes 27.11 1.90 16.88 2.60 25.62 2.0 41.72 0.44 13.68 2.43 16.84 2.02 10.97 2.13 16.75 2.78 21.20 2.04
INIT 3.01 3.01 0.0 0.0 3.08 3.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.76 0.76
ASR 94.09 12.0 98.20 15.10 96.92 26.42 94.70 1.0 99.10 6.14 97.50 7.20 97.51 2.40 99.0 2.40 97.13 9.08

M-Instrs 239.12 14.64 214.32 14.09 202.45 17.18 226.92 21.70 237.94 25.23 135.35 18.25 195.80 25.83 523.85 27.25 246.97 20.52

K=10

@4

M-Nodes 27.28 2.78 16.92 2.97 25.52 2.57 41.66 2.20 13.68 2.79 17.0 2.69 11.01 2.42 16.75 4.50 21.23 2.86

Recall pre attack 0.84 0.84 0.98 0.98 0.91 0.91 0.96 0.96 0.98 0.98 0.90 0.90 0.99 0.99 0.97 0.97 0.94 0.94
Recall post attack 0.12 0.81 0.07 0.88 0.19 0.79 0.10 0.96 0.04 0.95 0.10 0.84 0.10 0.97 0.07 0.96 0.10 0.90

wASR 88.13 19.10 93.35 12.20 81.42 20.55 90.28 4.10 96.45 5.18 90.0 16.02 89.84 2.83 93.17 4.08 90.33 10.51
INIT 37.37 37.37 6.40 6.40 25.46 25.46 10.40 10.40 6.90 6.90 30.80 30.80 3.68 3.68 8.11 8.11 16.14 16.14
ASR 91.78 42.10 98.10 21.20 89.73 39.78 92.70 10.70 97.90 12.07 98.60 39.20 93.64 7.0 95.60 11.32 94.76 22.92

M-Instrs 237.26 9.74 211.20 12.98 200.39 12.56 226.72 5.96 238.95 15.91 133.75 11.77 198.47 14.0 523.0 12.5 246.22 11.93@1

M-Nodes 27.18 1.58 16.86 2.46 24.98 2.02 41.59 0.19 13.70 2.12 16.74 1.97 11.17 1.79 16.73 2.25 21.12 1.80
INIT 18.94 18.94 2.10 2.10 9.82 9.82 4.30 4.30 1.60 1.60 10.50 10.50 1.19 1.19 3.20 3.20 6.46 6.46
ASR 90.08 23.80 96.90 13.0 86.07 23.89 91.0 4.80 97.40 5.53 95.70 20.50 91.85 2.70 94.69 4.11 92.96 12.29

M-Instrs 237.21 10.01 210.50 12.93 198.92 16.28 226.69 5.71 239.4 20.62 134.70 13.61 199.68 18.11 523.10 13.20 246.28 13.81@2

M-Nodes 27.36 1.66 16.94 2.63 24.70 2.34 41.51 0.25 13.71 2.38 16.81 2.21 11.22 1.48 16.78 2.37 21.13 1.92
INIT 6.11 6.11 0.40 0.40 2.28 2.28 0.60 0.60 0.30 0.30 0.0 0.0 0.30 0.30 0.60 0.60 1.32 1.32
ASR 86.97 8.50 93.10 8.40 77.97 12.25 89.20 0.80 96.0 2.11 87.0 3.90 88.37 1.30 91.99 0.80 88.82 4.76

M-Instrs 240.62 10.69 210.86 12.60 198.26 21.06 226.76 14.75 240.66 28.62 137.75 17.59 201.81 22.08 521.96 16.0 247.33 17.92@3

M-Nodes 27.52 2.12 17.16 2.79 23.81 2.77 41.42 0.50 13.64 2.38 17.10 2.72 11.18 1.85 16.95 2.88 21.10 2.25
INIT 0.30 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.04
ASR 83.67 2.0 85.30 6.20 71.92 6.28 88.20 0.10 94.50 1.01 78.70 0.50 85.49 0.30 90.39 0.10 84.77 2.06

M-instrs@4 242.59 19.4 213.31 10.74 196.17 25.34 226.72 44.0 241.91 28.40 140.61 17.80 204.38 21.33 521.90 35.0 248.45 25.25

K=100

@4

M-Nodes 27.93 3.30 17.69 2.81 23.39 2.94 41.37 4.0 13.62 2.20 17.62 4.0 11.31 3.33 16.98 6.0 21.24 3.57

TABLE 10: Untargeted attack at K = 10 and K = 100 when considering a pool of size 1000 with λ ∈ {0, 0.3}. In
column AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
Recall pre attack 0.49 0.49 0.81 0.81 0.0 0.0 0.79 0.79 0.78 0.78 0.60 0.60 0.85 0.85 0.72 0.72 0.63 0.63
Recall post attack 0.03 0.42 0.01 0.59 0.0 0.0 0.03 0.78 0.0 0.65 0.01 0.52 0.01 0.78 0.0 0.65 0.01 0.55

wASR 97.39 58.28 99.45 41.33 100.0 100.0 97.27 22.27 99.87 34.53 99.50 47.57 98.78 22.39 99.60 34.89 98.98 45.16
INIT 88.76 88.76 47.42 47.42 100.0 100.0 46.29 46.29 55.41 55.41 80.66 80.66 37.82 37.82 64.76 64.76 65.14 65.14
ASR 98.80 90.30 99.80 67.30 100.0 100.0 98.60 47.49 100.0 67.04 100.0 83.37 99.40 47.90 100.0 71.21 99.57 71.83

M-Instrs 233.71 7.86 216.29 9.98 201.32 7.69 227.07 4.63 236.96 9.26 133.02 8.27 192.94 10.87 522.46 9.21 245.47 8.47@1

M-Nodes 27.06 1.52 16.94 1.98 25.80 1.63 41.84 0.27 13.65 1.75 16.73 1.69 10.84 1.74 16.75 1.75 21.20 1.54
INIT 75.80 75.80 23.61 23.61 100.0 100.0 27.15 27.15 28.66 28.66 58.02 58.02 18.36 18.36 38.35 38.35 46.24 46.24
ASR 98.29 80.17 99.60 50.60 100.0 100.0 97.70 28.66 100.0 44.35 100.0 64.83 99.30 26.55 99.70 51.18 99.32 55.79

M-Instrs 234.06 8.18 215.61 10.89 201.32 7.69 226.92 5.34 236.96 11.05 133.02 9.17 193.11 12.86 523.28 10.0 245.54 9.40@2

M-Nodes 26.98 1.53 16.97 2.14 25.80 1.63 41.80 0.37 13.65 1.87 16.73 1.79 10.86 1.83 16.74 1.81 21.19 1.62
INIT 34.84 34.84 5.85 5.85 100.0 100.0 9.92 9.92 5.41 5.41 19.44 19.44 4.19 4.19 7.23 7.23 23.36 23.36
ASR 96.89 46.62 99.40 29.70 100.0 100.0 96.89 11.52 99.90 19.15 99.50 32.16 98.50 11.02 99.50 14.69 98.82 33.11

M-Instrs 235.75 9.53 215.08 12.58 201.32 7.69 226.99 7.33 237.05 17.25 133.54 12.04 194.47 17.99 523.11 14.75 245.91 12.40@3

M-Nodes 27.07 1.79 16.97 2.46 25.80 1.63 41.76 0.40 13.65 2.26 16.79 2.04 10.94 2.07 16.74 2.31 21.22 1.87
INIT 3.71 3.71 0.0 0.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.96 12.96
ASR 95.58 16.03 99.01 17.70 100.0 100.0 95.89 1.40 99.60 7.56 98.50 9.92 97.90 4.11 99.20 2.49 98.21 19.90

M-Instrs 237.11 13.57 214.63 13.43 201.32 7.69 227.03 24.29 237.46 25.08 134.51 17.09 195.15 26.41 523.77 26.67 246.37 19.28

K=10

@4

M-Nodes 27.13 2.58 17.0 2.87 25.80 1.63 41.71 2.0 13.65 2.51 16.94 2.65 10.97 2.44 16.70 4.10 21.24 2.60

Recall pre attack 0.77 0.77 0.96 0.96 0.77 0.77 0.93 0.93 0.96 0.96 0.84 0.84 0.97 0.97 0.94 0.94 0.89 0.89
Recall post attack 0.09 0.72 0.03 0.83 0.09 0.63 0.07 0.93 0.02 0.90 0.04 0.77 0.06 0.95 0.03 0.91 0.05 0.83

wASR 91.19 28.27 96.55 17.12 91.50 37.15 93.11 7.16 97.87 9.73 96.14 23.05 94.39 5.41 96.66 8.86 94.68 17.09
INIT 51.31 51.31 11.21 11.21 54.91 54.91 17.54 17.54 12.12 12.12 42.48 42.48 6.99 6.99 17.07 17.07 26.70 26.70
ASR 94.48 56.54 98.81 29.10 95.21 63.66 94.79 18.24 98.60 21.27 99.60 49.70 96.41 12.12 97.79 22.51 96.96 34.14

M-Instrs 235.98 8.73 214.91 12.24 200.80 9.82 226.65 5.26 238.58 14.26 133.20 10.47 196.27 13.38 524.59 11.14 246.37 10.66@1

M-Nodes 27.09 1.56 16.84 2.32 25.41 1.80 41.68 0.29 13.67 2.02 16.76 1.88 11.02 1.79 16.64 1.96 21.14 1.70
INIT 29.92 29.92 3.57 3.57 29.57 29.57 7.21 7.21 3.11 3.11 19.04 19.04 2.69 2.69 6.73 6.73 12.73 12.73
ASR 93.47 36.29 98.12 18.90 94.29 45.45 93.89 8.02 98.20 10.38 99.20 29.86 95.61 6.11 97.59 11.02 96.30 20.75

M-Instrs 236.69 9.41 213.87 12.81 200.03 11.97 226.66 5.62 238.76 18.61 133.54 12.58 196.78 14.56 524.98 13.55 246.41 12.39@2

M-Nodes 27.22 1.58 16.87 2.54 25.35 2.0 41.63 0.25 13.69 2.30 16.81 2.04 11.05 1.82 16.64 2.14 21.16 1.83
INIT 10.34 10.34 0.60 0.60 7.88 7.88 1.60 1.60 0.70 0.70 1.30 1.30 0.60 0.60 0.90 0.90 2.99 2.99
ASR 89.96 15.72 95.93 11.90 90.07 25.91 92.59 2.20 97.70 4.94 94.89 10.82 93.61 2.51 95.88 1.54 93.83 9.44

M-Instrs 240.27 10.20 212.58 12.97 199.66 16.57 226.71 13.32 239.13 24.49 136.12 15.07 198.60 22.40 524.66 19.92 247.22 16.87@3

M-Nodes 27.33 2.0 17.02 2.84 24.99 2.41 41.55 0.55 13.69 2.59 16.97 2.46 11.12 1.92 16.69 2.54 21.17 2.16
INIT 1.10 1.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 0.14
ASR 86.85 4.54 93.35 8.60 86.42 13.56 91.18 0.20 96.99 2.32 90.88 1.80 91.92 0.90 95.38 0.36 91.62 4.04

M-Instrs 243.81 13.49 213.29 11.51 200.17 22.78 226.59 29.0 240.05 31.17 137.90 15.17 199.77 24.67 525.34 31.67 248.36 22.43

K=100

@4

M-Nodes 27.79 2.56 17.25 3.05 24.66 2.99 41.46 4.0 13.70 2.26 17.15 2.89 11.19 1.78 16.72 5.33 21.24 3.11

TABLE 11: Untargeted attack at K = 10 and K = 100 when considering λ = 0.01 and |P | ∈ {32, 128, 512, 1000}. In
column AVG we report the average of the measures across all models.

Models
Gemini SAFE jTrans AVG

Pool Size 32 128 512 1000 32 128 512 1000 32 128 512 1000 32 128 512 1000

Recall pre attack 0.90 0.71 0.55 0.48 0.98 0.93 0.84 0.78 0.93 0.81 0.67 0.61 0.94 0.82 0.69 0.62
Recall post attack 0.46 0.23 0.14 0.11 0.26 0.07 0.02 0.01 0.66 0.34 0.17 0.12 0.46 0.21 0.11 0.08

wASR 54.47 76.58 86.24 89.22 74.0 92.74 98.35 98.98 34.16 65.84 82.61 87.50 54.21 78.39 89.07 91.90
INIT 27.51 63.15 83.94 89.24 4.91 19.54 42.79 53.86 21.69 51.31 73.19 80.30 18.04 44.67 66.64 74.47
ASR 72.79 90.46 96.08 97.23 87.07 96.79 99.40 99.76 66.16 91.06 97.29 98.52 75.34 92.77 97.59 98.50

M-Instrs 26.32 24.03 23.28 23.04 46.29 44.81 44.31 44.16 18.93 17.71 17.41 17.38 30.51 28.85 28.33 28.19@1

M-Nodes 7.71 7.05 6.80 6.71 5.85 5.87 5.84 5.80 3.81 3.70 3.65 3.68 5.79 5.54 5.43 5.40
INIT 10.24 38.76 65.56 76.36 1.10 5.51 17.74 26.63 4.42 24.40 48.39 57.20 5.25 22.89 43.90 53.40
ASR 61.75 83.53 93.17 94.46 80.06 95.89 99.10 99.40 45.78 81.83 93.37 95.76 62.53 87.08 95.21 96.54

M-Instrs 27.94 25.12 23.74 23.49 47.13 44.92 44.39 44.29 19.93 18.28 17.68 17.52 31.67 29.44 28.60 28.43@2

M-Nodes 8.04 7.29 6.95 6.84 5.83 5.87 5.84 5.81 3.91 3.80 3.72 3.73 5.93 5.65 5.50 5.46
INIT 2.41 12.75 27.31 36.21 0.20 1.40 3.41 6.14 0.0 1.20 11.95 18.54 0.87 5.12 14.22 20.30
ASR 47.49 71.59 83.03 88.18 69.14 90.98 98.20 98.67 16.77 55.12 78.41 84.85 44.47 72.56 86.55 90.57

M-Instrs 30.37 27.31 25.48 24.62 48.72 45.75 44.57 44.43 22.75 19.74 18.63 18.28 33.95 30.93 29.56 29.11@3

M-Nodes 8.80 7.90 7.41 7.17 5.74 5.89 5.87 5.83 4.44 4.10 3.92 3.90 6.33 5.96 5.73 5.63
INIT 0.10 1.41 2.91 4.90 0.10 0.20 0.30 0.36 0.0 0.0 0.0 0.0 0.07 0.54 1.07 1.75
ASR 35.84 60.74 72.69 77.0 59.72 87.27 96.69 98.07 7.93 35.34 61.35 70.87 34.50 61.12 76.91 81.98

M-Instrs 32.79 29.42 27.45 26.52 49.98 46.28 44.80 44.56 24.14 21.08 19.64 19.22 35.64 32.26 30.63 30.10

K=10

@4

M-Nodes 9.65 8.55 7.93 7.66 5.67 5.90 5.89 5.85 4.68 4.34 4.13 4.07 6.67 6.26 5.98 5.86

Recall pre attack - 0.99 0.85 0.77 - 1.0 0.98 0.96 - 1.0 0.90 0.85 - 1.0 0.91 0.86
Recall post attack - 0.79 0.38 0.30 - 0.70 0.16 0.09 - 0.94 0.50 0.36 - 0.81 0.35 0.25

wASR - 21.01 61.97 70.45 - 29.86 83.84 91.08 - 5.65 49.8 63.96 - 18.84 65.20 75.16
INIT - 2.61 35.64 50.80 - 0.20 6.81 12.41 - 0.70 30.62 41.63 - 1.17 24.36 34.95
ASR - 33.84 76.20 83.92 - 47.70 91.08 96.02 - 14.16 78.31 87.82 - 31.90 81.86 89.25

M-Instrs - 31.84 25.88 24.94 - 50.29 45.69 44.93 - 22.77 18.35 17.94 - 34.97 29.97 29.27@1

M-Nodes - 8.82 7.56 7.24 - 5.71 5.87 5.85 - 4.26 3.77 3.77 - 6.26 5.73 5.62
INIT - 1.0 17.97 30.03 - 0.10 1.90 3.49 - 0.0 10.54 18.11 - 0.37 10.14 17.21
ASR - 23.09 67.07 76.04 - 34.57 87.68 93.98 - 6.43 63.35 78.28 - 21.36 72.70 82.77

M-Instrs - 33.91 27.43 26.16 - 51.61 46.05 45.29 - 24.92 19.24 18.57 - 36.81 30.91 30.01@2

M-Nodes - 9.35 7.88 7.50 - 5.57 5.89 5.89 - 4.41 3.82 3.84 - 6.44 5.86 5.74
INIT - 0.20 5.32 10.44 - 0.0 0.50 1.20 - 0.0 0.0 1.17 - 0.07 1.94 4.27
ASR - 16.16 56.83 65.81 - 22.24 81.46 89.04 - 1.31 36.75 53.6 - 13.24 58.35 69.48

M-Instrs - 36.48 29.18 28.07 - 52.67 47.01 46.13 - 24.69 21.31 19.90 - 37.95 32.50 31.37@3

M-Nodes - 10.05 8.35 8.05 - 5.41 5.84 5.87 - 4.77 4.26 4.15 - 6.74 6.15 6.02
INIT - 0.0 0.20 1.17 - 0.0 0.10 0.24 - 0.0 0.0 0.0 - 0.0 0.10 0.47
ASR - 10.94 47.79 56.02 - 14.93 75.15 85.30 - 0.70 20.78 36.12 - 8.86 47.91 59.15

M-Instrs - 38.30 31.13 30.01 - 53.18 47.83 46.68 - 21.0 23.01 21.0 - 37.49 33.99 32.56

K=100

@4

M-Nodes - 10.35 8.79 8.63 5.28 5.83 5.88 - 4.86 4.50 4.34 - 6.83 6.37 6.28

TABLE 12: Targeted attack at K = 5 and K = 10 when considering a pool of size 32 with λ ∈ {0, 0.3}. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3

wASR 58.05 14.44 68.10 15.20 38.14 13.36 92.11 14.58 74.17 17.72 56.05 22.65 62.78 15.24 73.25 15.37 65.33 16.07
INIT 30.10 30.10 31.0 31.0 29.29 29.29 25.25 25.25 27.10 27.10 43.60 43.60 22.30 22.30 29.16 29.16 29.72 29.72
ASR 85.70 32.70 85.70 33.60 59.69 29.66 97.8 26.15 90.40 34.74 94.0 54.80 80.70 28.31 90.38 31.59 85.55 33.94@1

M-Nodes 13.64 0.92 18.68 0.96 13.72 1.05 33.50 0.07 15.57 0.98 11.50 1.04 11.40 0.90 18.01 0.85 17.0 0.85
INIT 16.80 16.80 15.0 15.0 12.65 12.65 16.23 16.23 17.10 17.10 20.0 20.0 14.60 14.60 16.33 16.33 16.09 16.09
ASR 69.8 18.61 77.60 17.50 46.22 15.55 96.09 17.13 83.60 21.39 76.20 28.20 70.50 18.78 81.16 18.51 75.15 19.46

M-Instrs 177.28 4.75 210.62 5.55 104.62 5.17 156.23 2.18 123.69 4.95 79.35 5.49 111.24 5.76 193.30 4.43 144.54 4.78@2

M-Nodes 14.01 0.90 18.66 0.90 12.41 0.97 33.55 0.07 15.69 0.97 12.02 1.06 11.38 0.82 18.20 0.75 16.99 0.80
INIT 4.50 4.50 5.30 5.30 3.16 3.16 8.92 8.92 6.90 6.90 3.30 3.30 6.90 6.90 6.61 6.61 5.70 5.70
ASR 47.60 4.93 63.10 6.90 29.69 6.08 90.48 9.62 69.90 10.34 35.9 6.0 56.80 9.64 68.74 7.85 57.78 7.67

M-Instrs 177.31 3.04 211.28 5.71 116.74 4.36 157.25 2.31 126.55 5.21 92.23 4.47 112.01 5.36 194.07 4.76 148.43 4.40@3

M-Nodes 14.51 0.69 18.47 0.9 12.24 0.85 33.74 0.08 15.8 1.05 13.45 1.03 11.29 0.83 18.5 0.67 17.25 0.76
INIT 1.21 1.21 2.30 2.30 1.22 1.22 5.51 5.51 2.70 2.70 0.70 0.70 3.70 3.70 3.11 3.11 2.56 2.56
ASR 29.10 1.51 46.0 2.80 16.94 2.16 84.07 5.41 52.80 4.42 18.10 1.60 43.10 4.22 52.71 3.52 42.85 3.20

M-Instrs 189.28 5.93 217.58 5.68 127.83 5.05 158.79 2.24 133.9 4.93 101.06 6.19 112.81 5.07 195.16 4.43 154.55 4.94

K=5

@4

M-Nodes 16.04 0.8 18.81 0.86 12.01 1.24 34.20 0.04 15.89 1.05 14.13 0.88 11.16 0.81 18.99 0.86 17.65 0.82

wASR 80.95 30.96 87.80 35.02 59.80 28.55 98.35 30.51 89.60 37.12 75.6 44.17 84.05 34.66 90.76 34.26 83.36 34.41
INIT 49.30 49.30 55.20 55.20 51.73 51.73 44.09 44.09 49.0 49.0 70.80 70.80 45.60 45.60 50.20 50.20 51.99 51.99
ASR 95.50 53.52 95.0 59.90 76.43 50.77 99.60 44.89 95.50 56.02 98.90 81.60 93.40 51.31 96.49 54.93 93.85 56.62

M-Instrs 187.36 4.44 214.27 5.98 105.82 4.71 156.66 1.63 121.52 4.92 74.16 5.07 109.49 5.88 198.37 4.16 145.96 4.60@1

M-Nodes 13.78 0.86 18.90 1.01 16.52 0.92 33.64 0.08 15.48 0.96 11.38 1.08 11.31 0.97 18.03 0.87 17.38 0.84
INIT 34.70 34.70 37.70 37.70 36.53 36.53 34.77 34.77 36.40 36.40 49.60 49.60 34.0 34.0 36.07 36.07 37.47 37.47
ASR 88.40 38.33 91.80 42.60 66.02 34.50 99.10 36.57 92.60 42.77 95.40 63.0 88.10 41.06 93.59 41.25 89.38 42.51

M-Instrs 183.01 4.40 213.54 5.94 104.13 4.90 156.57 1.75 121.92 5.02 75.15 5.25 109.68 5.79 198.19 4.19 145.27 4.66@2

M-Nodes 13.81 0.86 18.78 1.03 14.98 0.90 33.64 0.06 15.56 0.95 11.45 1.07 11.38 0.93 17.98 0.82 17.20 0.83
INIT 18.11 18.11 20.0 20.0 18.57 18.57 22.85 22.85 23.20 23.20 15.80 15.80 21.0 21.0 20.54 20.54 20.10 20.10
ASR 77.10 20.72 85.90 23.80 54.29 18.85 98.30 23.55 87.80 29.52 63.60 23.40 81.10 27.21 89.08 24.75 79.65 23.98

M-Instrs 185.11 4.70 212.0 5.80 103.81 5.57 156.53 1.68 122.60 4.75 85.51 5.09 110.79 5.99 196.56 4.47 146.61 4.76@3

M-Nodes 14.17 0.87 18.88 1.0 13.45 1.03 33.62 0.06 15.54 0.94 12.71 1.10 11.51 0.85 18.12 0.82 17.25 0.83
INIT 9.80 9.80 10.20 10.20 10.10 10.10 16.43 16.43 14.20 14.20 4.30 4.30 15.0 15.0 12.42 12.42 11.56 11.56
ASR 62.80 11.27 78.50 13.80 42.45 10.09 96.39 17.03 82.5 20.18 44.50 8.70 73.60 19.08 83.87 16.10 70.58 14.53

M-Instrs 188.77 4.06 217.14 6.14 108.34 4.98 157.09 1.64 124.88 5.18 94.42 5.69 111.24 5.53 197.1 4.12 149.87 4.67

K=10

@4

M-Nodes 14.99 0.77 19.10 0.96 12.62 0.89 33.72 0.06 15.75 0.98 13.92 1.13 11.60 0.74 18.30 0.70 17.50 0.78

TABLE 13: Targeted attack at K = 5 and K = 10 when considering a pool of size 128 with λ ∈ {0, 0.3}. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
wASR 32.17 4.84 46.30 4.03 13.98 4.35 78.18 3.63 48.20 4.37 30.80 5.88 36.40 3.74 43.29 3.50 41.16 4.29
INIT 11.50 11.50 8.10 8.10 7.96 7.96 6.81 6.81 8.20 8.20 11.30 11.30 5.90 5.90 7.49 7.49 8.41 8.41
ASR 57.60 12.50 68.70 9.94 29.80 11.74 89.28 7.52 69.50 10.94 65.30 17.40 54.10 8.13 65.17 8.95 62.43 10.89

M-Instrs 168.08 4.71 210.41 7.04 90.81 5.98 154.83 2.80 127.34 4.79 80.82 5.80 114.17 5.07 191.74 5.34 142.28 5.19@1

M-Nodes 14.21 0.85 18.40 0.98 9.98 1.11 33.08 0.08 15.76 0.95 12.27 1.01 11.42 0.86 18.03 0.94 16.64 0.85
INIT 5.0 5.0 3.10 3.10 2.14 2.14 4.21 4.21 2.80 2.80 2.80 2.80 3.10 3.10 2.59 2.59 3.22 3.22
ASR 39.40 5.54 55.90 4.37 17.76 4.53 82.97 4.41 56.70 4.92 37.60 5.20 43.0 4.62 50.40 4.12 47.97 4.71

M-Instrs 173.39 3.29 213.08 6.02 91.01 6.34 156.15 3.75 129.9 4.65 89.29 5.92 115.26 6.70 188.92 5.76 144.62 5.30@2

M-Nodes 15.14 0.65 18.33 0.82 10.26 1.18 33.40 0.14 15.77 0.98 13.23 0.88 11.23 0.91 17.91 1.02 16.91 0.82
INIT 0.90 0.90 0.90 0.90 0.20 0.20 1.70 1.70 0.80 0.80 0.40 0.40 1.20 1.20 0.20 0.20 0.79 0.79
ASR 20.40 1.01 38.10 1.19 5.82 0.93 74.35 1.70 39.8 1.10 13.70 0.70 29.50 1.31 34.33 0.70 32.0 1.08

M-Instrs 178.93 2.30 222.24 5.0 79.56 6.11 158.05 3.88 133.82 4.91 102.27 4.57 117.87 6.77 182.46 8.71 146.9 5.28@3

M-Nodes 16.21 0.20 18.84 0.67 8.98 1.11 33.69 0.12 15.78 1.27 14.58 1.14 11.17 0.62 18.30 1.43 17.19 0.82
INIT 0.20 0.20 0.20 0.20 0.10 0.10 1.0 1.0 0.10 0.10 0.10 0.10 0.60 0.60 0.0 0.0 0.29 0.29
ASR 11.30 0.30 22.50 0.60 2.55 0.21 66.13 0.90 26.80 0.50 6.60 0.20 19.0 0.90 23.25 0.20 22.27 0.48

M-Instrs 193.28 1.67 232.65 7.0 94.08 4.0 159.70 3.0 142.31 2.40 114.97 9.50 120.6 5.89 187.06 15.50 155.58 6.12

K=5

@4

M-Nodes 17.50 0.0 19.25 1.0 10.88 2.0 34.01 0.0 15.54 1.20 15.88 2.0 10.87 0.44 18.70 1.0 17.83 0.96

wASR 48.25 8.47 64.68 8.33 26.07 8.52 88.95 7.97 64.80 9.16 45.25 12.20 54.85 8.43 63.60 8.68 57.06 8.97
INIT 17.20 17.20 15.80 15.80 15.0 15.0 12.12 12.12 13.90 13.90 23.90 23.90 12.10 12.10 14.97 14.97 15.62 15.62
ASR 71.90 19.35 78.60 17.99 43.16 19.16 94.39 13.33 80.30 17.07 80.20 32.20 68.80 15.26 78.04 17.10 74.42 18.93

M-Instrs 173.62 5.29 214.53 6.80 94.86 5.87 155.21 2.19 123.74 4.94 77.29 5.63 112.70 5.57 193.41 4.74 143.17 5.13@1

M-Nodes 13.83 0.92 18.87 0.98 11.18 1.07 33.28 0.06 15.72 0.96 11.95 1.07 11.44 0.80 18.28 0.86 16.82 0.84
INIT 9.40 9.40 8.10 8.10 6.53 6.53 7.82 7.82 8.60 8.60 8.30 8.30 8.20 8.20 7.98 7.98 8.12 8.12
ASR 57.0 10.58 71.10 9.15 31.94 10.20 91.68 9.22 71.40 11.14 58.90 13.50 60.40 10.24 70.06 9.96 64.06 10.50

M-Instrs 173.68 4.25 213.81 5.61 96.81 5.84 155.94 2.75 126.32 4.86 84.68 5.16 112.83 4.88 192.08 4.77 144.52 4.76@2

M-Nodes 14.68 0.74 18.63 0.96 10.35 1.12 33.40 0.09 15.89 0.95 12.65 1.04 11.30 0.73 18.09 0.75 16.87 0.80
INIT 2.70 2.70 3.30 3.30 1.84 1.84 4.91 4.91 3.10 3.10 1.30 1.30 4.10 4.10 2.89 2.89 3.02 3.02
ASR 38.0 2.92 60.40 3.88 18.57 3.50 87.37 5.81 60.10 5.62 27.30 2.50 49.50 5.02 57.58 5.03 49.85 4.28

M-Instrs 177.87 3.83 214.63 5.08 93.72 5.94 157.19 3.53 129.75 4.57 96.62 4.76 115.36 6.20 189.60 4.76 146.84 4.83@3

M-Nodes 15.76 0.55 18.92 0.82 10.26 1.18 33.67 0.10 15.84 0.93 13.86 1.36 11.34 0.92 18.15 0.84 17.23 0.84
INIT 0.90 0.90 1.60 1.60 0.31 0.31 3.21 3.21 1.41 1.41 0.30 0.30 2.60 2.60 1.20 1.20 1.44 1.44
ASR 26.10 1.01 48.60 2.29 10.61 1.24 82.36 3.51 47.40 2.81 14.60 0.60 40.70 3.21 48.70 2.62 39.88 2.16

M-Instrs 190.36 8.0 219.14 5.83 104.95 6.92 159.24 2.11 136.29 3.89 109.49 6.67 116.21 5.19 192.21 5.19 153.49 5.48

K=10

@4

M-Nodes 16.57 0.80 19.48 0.70 10.99 1.33 34.19 0.06 16.05 0.71 14.71 1.67 11.42 0.88 18.37 1.0 17.72 0.89

TABLE 14: Targeted attack at K = 5 and K = 10 when considering a pool of size 512 with λ ∈ {0, 0.3}. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
wASR 16.93 1.16 26.88 1.03 5.15 1.11 58.27 0.98 27.95 0.93 15.82 1.17 20.52 0.98 18.09 1.01 23.7 1.05
INIT 3.80 3.80 1.90 1.90 2.24 2.24 1.60 1.60 1.90 1.90 2.40 2.40 1.70 1.70 1.80 1.80 2.17 2.17
ASR 34.20 3.63 49.0 2.70 12.24 3.71 71.94 2.10 49.50 2.71 38.30 3.98 34.50 2.51 34.37 2.92 40.51 3.03

M-Instrs 168.49 3.19 206.50 5.81 110.12 5.22 155.03 7.86 126.75 3.11 89.29 6.32 113.79 5.48 176.89 6.93 143.36 5.49@1

M-Nodes 15.67 0.44 17.87 1.04 10.58 1.0 33.09 0.10 15.64 0.59 13.28 0.90 11.32 1.20 18.37 1.17 16.98 0.80
INIT 1.0 1.0 0.40 0.40 0.31 0.31 1.10 1.10 0.50 0.50 0.20 0.20 0.40 0.40 0.60 0.60 0.56 0.56
ASR 19.70 0.81 33.0 1.0 6.02 0.72 65.03 1.20 33.80 0.70 18.0 0.70 24.30 0.90 21.34 1.01 27.65 0.88

M-Instrs 182.49 4.12 212.32 5.50 123.47 5.0 156.63 3.0 132.94 1.14 101.05 5.14 115.57 7.67 173.31 7.80 149.72 4.92@2

M-Nodes 16.52 0.25 17.77 1.0 11.12 0.57 33.57 0.0 15.54 0.57 14.43 1.14 11.03 1.33 18.49 1.40 17.31 0.78
INIT 0.10 0.10 0.10 0.10 0.0 0.0 0.40 0.40 0.10 0.10 0.0 0.0 0.20 0.20 0.0 0.0 0.11 0.11
ASR 8.6 0.20 16.90 0.30 1.33 0.0 53.01 0.40 19.0 0.20 4.70 0.0 14.50 0.30 10.42 0.10 16.06 0.19

M-Instrs 196.09 4.5 229.03 5.33 133.38 - 158.70 0.0 132.81 2.0 108.21 - 111.91 5.67 172.12 21.0 155.28 6.42@3

M-Nodes 17.74 0.0 18.53 0.67 11.85 - 34.05 0.0 15.64 1.0 16.21 - 11.63 0.67 19.37 0.0 18.13 0.39
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.20 0.20 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.04 0.04
ASR 5.20 0.0 8.60 0.10 1.02 0.0 43.09 0.20 9.50 0.10 2.30 0.0 8.80 0.20 6.21 0.0 10.59 0.08

M-Instrs 210.69 - 249.30 13.0 135.9 - 161.58 0.0 144.53 0.0 121.22 - 116.50 2.0 178.15 - 164.73 3.75

K=5

@4

M-Nodes 17.88 - 19.67 0.0 13.0 - 34.29 0.0 15.41 0.0 16.78 - 12.05 1.0 21.23 - 18.79 0.25

wASR 25.10 2.39 40.15 2.38 9.34 2.14 71.37 1.75 40.02 1.96 23.35 2.26 30.48 2.08 30.24 1.81 33.76 2.10
INIT 5.70 5.70 3.90 3.90 3.47 3.47 3.11 3.11 4.0 4.0 4.80 4.80 3.30 3.30 4.11 4.11 4.05 4.05
ASR 45.10 6.35 59.80 5.60 19.49 6.59 80.96 3.71 59.10 5.12 49.10 6.86 44.60 4.52 47.19 4.63 50.67 5.42

M-Instrs 170.18 4.76 210.35 6.88 101.21 6.39 154.78 5.41 128.05 3.84 84.46 5.64 112.76 5.58 182.05 5.24 142.98 5.47@1

M-Nodes 15.23 0.57 18.35 1.07 10.80 1.16 33.0 0.16 15.72 0.86 12.66 0.99 11.36 1.02 18.62 1.0 16.97 0.85
INIT 2.30 2.30 1.90 1.90 0.71 0.71 1.80 1.80 1.40 1.40 0.80 0.80 1.60 1.60 1.40 1.40 1.49 1.49
ASR 29.20 2.52 47.3 2.70 11.33 1.75 75.55 1.90 46.3 1.91 28.0 1.79 34.40 2.51 34.97 1.91 38.38 2.12

M-Instrs 173.84 3.16 214.23 6.85 108.93 5.71 156.73 7.26 129.57 2.47 94.18 3.61 114.63 5.56 173.26 7.05 145.67 5.21@2

M-Nodes 16.26 0.48 18.68 0.81 11.50 0.82 33.46 0.11 15.70 0.84 13.61 0.67 11.13 1.12 18.08 1.05 17.3 0.74
INIT 0.50 0.50 0.40 0.40 0.0 0.0 0.80 0.80 0.30 0.30 0.10 0.10 0.50 0.50 0.10 0.10 0.34 0.34
ASR 15.70 0.50 32.30 0.80 4.29 0.21 67.33 0.90 32.30 0.60 10.40 0.30 24.10 0.90 22.14 0.50 26.07 0.59

M-Instrs 181.08 2.80 224.91 5.0 108.83 10.50 159.0 4.0 131.05 1.33 105.67 4.33 114.20 3.89 175.48 10.20 150.03 5.26@3

M-Nodes 17.45 0.0 19.17 0.75 11.14 2.0 33.88 0.0 15.88 0.67 15.56 1.33 11.2 0.89 19.18 1.60 17.93 0.90
INIT 0.20 0.20 0.0 0.0 0.0 0.0 0.40 0.40 0.0 0.0 0.10 0.10 0.30 0.30 0.0 0.0 0.12 0.12
ASR 10.4 0.20 21.20 0.40 2.24 0.0 61.62 0.50 22.40 0.20 5.90 0.10 18.80 0.40 16.63 0.20 19.90 0.25

M-Instrs 192.19 2.50 239.85 6.75 124.5 - 160.23 5.40 140.71 0.0 118.15 4.0 117.37 4.25 176.20 16.0 158.65 5.56

K=10

@4

M-Nodes 18.25 0.0 19.49 0.50 13.45 - 34.12 0.0 16.40 0.0 16.24 2.0 11.53 0.50 19.39 1.0 18.61 0.57

TABLE 15: Targeted attack at K = 5 and K = 10 when considering a pool of size 1000 with λ ∈ {0, 0.3}. In column
AVG we report the average of the measures across all models.

Models
Gemini GMN ZEEK BinFinder SAFE jTrans Trex PalmTree AVG

λ 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3
wASR 11.35 0.55 19.80 0.65 0.0 0.0 49.55 0.45 19.60 0.43 11.0 0.40 15.17 0.55 13.83 0.55 17.54 0.45
INIT 1.90 1.90 0.90 0.90 0.0 0.0 0.90 0.90 1.0 1.0 0.90 0.90 1.20 1.20 0.70 0.60 0.94 0.94
ASR 24.30 1.81 38.60 1.50 0.0 0.0 63.63 1.10 38.50 1.31 27.20 1.50 27.60 1.51 26.85 1.51 30.84 1.28

M-Instrs 167.52 1.44 205.78 4.67 - - 154.96 7.36 129.22 4.23 94.96 3.67 115.66 3.6 178.75 7.67 149.55 4.66@1

M-Nodes 15.69 0.33 17.11 1.07 - - 33.31 0.0 15.98 0.77 13.80 0.53 11.11 0.67 19.0 0.93 18.0 0.61
INIT 0.40 0.40 0.20 0.20 0.0 0.0 0.50 0.50 0.30 0.30 0.0 0.0 0.20 0.20 0.30 0.30 0.24 0.24
ASR 13.20 0.30 24.80 0.80 0.0 0.0 55.41 0.60 24.30 0.30 12.30 0.10 17.70 0.40 15.73 0.70 20.43 0.40

M-Instrs 177.74 3.0 213.77 5.88 - - 157.06 1.50 136.39 1.33 109.87 4.0 114.71 3.0 173.85 8.0 154.77 3.82@2

M-Nodes 16.53 0.0 17.09 1.0 - - 33.59 0.0 15.68 0.67 14.86 2.0 11.08 1.5 18.19 1.43 18.15 0.94
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.10 0.10 0.0 0.0 0.20 0.20 0.0 0.0 0.05 0.05
ASR 4.90 0.10 10.50 0.20 0.0 0.0 43.59 0.10 10.60 0.10 2.80 0.0 9.40 0.20 7.62 0.0 11.18 0.09

M-Instrs 211.73 9.0 241.01 8.0 - - 159.89 0.0 125.3 0.0 120.07 - 120.39 2.0 171.64 - 164.29 3.80@3

M-Nodes 17.96 0.0 18.97 1.0 - - 34.20 0.0 15.75 0.0 17.07 - 12.84 1.0 20.05 - 19.55 0.40
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.10 0.0 0.0 0.01 0.01
ASR 3.0 0.0 5.30 0.10 0.0 0.0 35.57 0.0 5.0 0.0 1.70 0.0 6.0 0.10 5.11 0.0 7.71 0.02

M-Instrs 245.87 - 234.64 13.0 - - 161.7 - 129.72 - 130.06 - 119.83 0.0 186.63 - 172.64 6.5

K=5

@4

M-Nodes 16.87 - 18.94 0.0 - - 34.3 - 15.72 - 18.0 - 12.73 0.0 22.35 - 19.84 0.0

wASR 17.95 1.11 29.93 1.18 0.0 0.0 62.12 1.08 29.98 1.05 17.22 1.07 22.9 1.13 21.89 1.01 25.25 0.95
INIT 3.80 3.80 2.0 2.0 0.0 0.0 1.60 1.60 2.10 2.10 2.30 2.30 1.60 1.60 2.0 2.0 1.92 1.92
ASR 33.90 3.53 50.10 2.90 0.0 0.0 72.65 2.10 48.50 2.91 38.70 3.70 35.60 2.71 37.17 2.82 39.58 2.58

M-Instrs 171.54 2.63 207.16 5.72 - - 154.78 7.86 125.41 3.38 89.19 5.62 113.74 5.19 179.66 7.68 148.78 5.44@1

M-Nodes 15.54 0.29 18.06 0.90 - - 33.11 0.10 15.67 0.69 13.19 0.97 11.10 1.26 18.68 1.36 17.91 0.80
INIT 0.90 0.90 0.60 0.60 0.0 0.0 1.10 1.10 0.70 0.70 0.10 0.10 0.70 0.70 0.60 0.60 0.59 0.59
ASR 20.80 0.81 36.10 1.20 0.0 0.0 66.53 1.30 35.40 1.0 20.0 0.60 25.90 1.0 24.45 1.01 28.65 0.86

M-Instrs 179.71 4.12 213.21 5.25 - - 156.29 3.38 130.25 1.20 99.26 7.0 115.91 5.0 175.13 9.20 152.82 5.02@2

M-Nodes 16.49 0.25 17.89 0.83 - - 33.47 0.0 15.82 0.60 14.16 1.0 10.88 0.80 18.80 1.20 18.22 0.67
INIT 0.0 0.0 0.10 0.10 0.0 0.0 0.50 0.50 0.20 0.20 0.0 0.0 0.30 0.30 0.0 0.0 0.14 0.14
ASR 10.20 0.10 21.0 0.40 0.0 0.0 57.72 0.60 22.40 0.20 6.80 0.0 17.80 0.40 14.93 0.10 18.86 0.22

M-Instrs 182.40 9.0 224.53 6.25 - - 159.46 1.50 130.45 2.0 111.19 - 114.92 4.25 170.79 21.0 156.25 7.33@3

M-Nodes 18.02 0.0 18.89 1.0 - - 33.95 0.0 16.24 1.0 15.79 - 11.39 0.50 19.76 0.0 19.15 0.42
INIT 0.0 0.0 0.0 0.0 0.0 0.0 0.30 0.30 0.0 0.0 0.0 0.0 0.20 0.20 0.0 0.0 0.06 0.06
ASR 6.90 0.0 12.50 0.20 0.0 0.0 51.6 0.30 13.60 0.10 3.40 0.0 12.30 0.40 11.02 0.10 13.92 0.14

M-Instrs 200.35 - 245.32 11.0 - - 160.52 0.0 140.0 0.0 132.94 - 119.30 4.25 181.96 21.0 168.63 7.25

K=10

@4

M-Nodes 18.58 - 19.55 1.0 - - 34.24 0.0 16.24 0.0 17.88 - 11.34 0.5 20.51 0.0 19.76 0.30

TABLE 16: Targeted attack at K = 5 and K = 10 when considering λ = 0.01 and |P | ∈ {32, 128, 512, 1000}. In
column AVG we report the average of the measures across all models.

Models
Gemini SAFE jTrans AVG

Pool Size 32 128 512 1000 32 128 512 1000 32 128 512 1000 32 128 512 1000

wASR 29.49 12.52 4.56 2.48 54.23 28.25 13.63 8.38 32.17 10.80 3.33 1.80 38.63 17.19 7.17 4.22
INIT 30.26 11.90 3.97 2.08 27.0 8.30 1.90 1.0 42.60 11.10 2.40 0.90 33.29 10.43 2.76 1.33
ASR 53.08 26.69 11.41 5.95 73.30 45.80 26.40 18.50 70.10 29.70 9.70 4.90 65.49 34.06 15.84 9.78

M-Instrs 11.36 12.16 13.55 13.83 24.53 28.12 30.52 30.85 7.34 8.42 8.80 7.88 14.41 16.23 17.62 17.52@1

M-Nodes 3.67 4.13 4.61 4.80 4.86 5.28 5.62 5.65 1.84 2.11 2.21 1.88 3.46 3.84 4.15 4.11
INIT 16.77 5.26 0.99 0.50 17.30 2.90 0.50 0.20 19.70 2.50 0.20 0.0 17.92 3.55 0.56 0.23
ASR 36.01 15.48 4.46 2.78 62.10 34.20 16.40 9.80 44.10 10.90 2.60 1.70 47.40 20.19 7.82 4.76

M-Instrs 11.91 13.19 16.49 18.25 26.13 29.36 32.23 32.60 7.90 9.70 9.19 9.06 15.31 17.42 19.30 19.97@2

M-Nodes 3.88 4.59 5.47 5.79 5.02 5.32 5.65 5.82 2.0 2.31 2.38 2.35 3.63 4.07 4.50 4.65
INIT 5.56 0.79 0.10 0.0 7.40 0.90 0.10 0.10 3.30 0.40 0.0 0.0 5.42 0.70 0.07 0.03
ASR 18.35 5.36 1.49 0.79 46.40 20.10 7.30 3.70 11.0 2.0 0.60 0.30 25.25 9.15 3.13 1.60

M-Instrs 14.22 15.65 17.87 18.25 28.03 31.86 35.07 35.57 8.48 11.0 9.50 11.67 16.91 19.50 20.81 21.83@3

M-Nodes 4.63 5.37 6.0 6.50 5.21 5.68 6.19 6.49 2.20 3.10 3.0 3.33 4.01 4.72 5.06 5.44
INIT 1.49 0.20 0.0 0.0 2.90 0.10 0.0 0.0 0.80 0.10 0.0 0.0 1.73 0.13 0.0 0.0
ASR 10.52 2.58 0.89 0.40 35.10 12.90 4.40 1.50 3.50 0.60 0.40 0.30 16.37 5.36 1.90 0.73

M-Instrs 16.67 17.62 16.89 15.25 29.70 33.81 36.23 34.07 9.63 13.0 12.0 11.67 18.67 21.48 21.71 20.33

K=5

@4

M-Nodes 5.23 5.77 6.0 5.50 5.21 5.60 6.32 6.53 2.34 3.67 3.50 3.33 4.26 5.01 5.27 5.12

wASR 50.97 21.23 7.81 4.61 73.78 42.18 21.57 14.70 52.98 19.80 5.35 3.30 59.24 27.74 11.58 7.54
INIT 49.80 17.66 5.85 3.97 50.0 13.90 4.0 2.10 71.0 23.60 4.80 2.30 56.93 18.39 4.88 2.79
ASR 73.12 36.9 17.56 11.01 85.90 56.80 36.30 26.60 89.0 46.90 14.80 9.30 82.67 46.87 22.89 15.64

M-Instrs 10.52 12.61 12.50 13.05 23.24 26.63 29.15 29.42 6.83 7.84 8.74 8.98 13.53 15.69 16.80 17.15@1

M-Nodes 3.44 4.16 4.21 4.40 4.71 5.16 5.38 5.53 1.73 1.97 2.22 2.28 3.29 3.76 3.94 4.07
INIT 34.82 9.62 2.38 0.99 37.20 8.50 1.40 0.80 49.60 8.60 0.80 0.10 40.54 8.91 1.53 0.63
ASR 60.32 25.40 8.43 4.27 79.30 46.80 24.80 16.90 75.30 24.50 4.80 2.70 71.64 32.23 12.68 7.96

M-Instrs 11.22 13.15 14.20 15.81 24.02 28.16 30.60 31.20 7.23 8.91 9.0 10.19 14.16 16.74 17.93 19.07@2

M-Nodes 3.67 4.38 4.75 5.07 4.80 5.31 5.44 5.62 1.83 2.16 2.42 2.52 3.43 3.95 4.20 4.40
INIT 18.95 2.78 0.50 0.0 23.20 3.0 0.30 0.20 14.70 1.30 0.10 0.0 18.95 2.36 0.30 0.07
ASR 42.36 13.89 3.27 1.98 69.10 36.80 14.90 9.0 33.40 5.60 1.30 0.70 48.29 18.76 6.49 3.89

M-Instrs 12.21 15.25 17.70 18.40 25.24 29.48 31.82 34.06 7.88 9.23 11.92 11.71 15.11 17.99 20.48 21.39@3

M-Nodes 3.93 5.21 5.76 5.60 4.99 5.36 5.68 5.91 2.05 2.46 3.08 3.43 3.66 4.34 4.84 4.98
INIT 10.02 0.99 0.20 0.0 13.60 1.40 0.0 0.0 4.0 0.30 0.10 0.0 9.21 0.90 0.10 0.0
ASR 28.08 8.73 1.98 1.19 60.80 28.30 10.30 6.30 14.20 2.20 0.50 0.50 34.36 13.08 4.26 2.66

M-Instrs 12.93 16.45 19.75 17.75 26.21 30.31 33.99 35.37 8.70 10.55 14.60 14.60 15.95 19.10 22.78 22.57

K=10

@4

M-Nodes 4.33 5.34 6.20 5.17 5.08 5.29 5.94 6.25 2.34 2.64 4.0 4.0 3.92 4.42 5.38 5.14

	Introduction
	Contributions

	Threat Model
	Targeted and Untargeted Attacks

	Attack Overview
	Multi-Objective Optimization
	Greedy Optimizer

	Semantics-Preserving Transformations

	Target Systems
	Graph Neural Network (GNN): Gemini and GMN
	Intermediate Representation (IR) and Neural Network (NN): Zeek
	Fully Connected Neural Network: BinFinder
	Recurrent Neural Network (RNN): SAFE
	Transformer: jTrans, Trex, PalmTree

	Datasets and Implementation
	Dataset
	Implementation Details

	Experimental Results
	RQ1: Targeted vs Untargeted Attacks
	Untargeted Attacks
	Targeted Attacks
	Impacts of the Modification Size

	RQ2: Generalizability and Transferability
	Generalizability
	Transferability

	RQ3: Common Model Behaviors
	Distribution of Applied Transformations
	Transformations in Isolation
	Efficiency Analysis
	Qualitative Analysis

	Non-ML Approaches

	Related Works
	Attacking Image Classifiers and NLP Models
	Attacking Models for Source Code Analysis
	Attacking Models for Binary Code Analysis

	Discussion
	Practical Impacts
	Limitations

	Conclusions and Future Works
	References
	Appendix A
	Appendix B

