
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Adversarial Attacks against Binary Similarity
Systems
GIANLUCA CAPOZZI1, DANIELE CONO D’ELIA1, GIUSEPPE ANTONIO DI LUNA1, and
LEONARDO QUERZONI1
1Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, 00185 Rome, Italy. (e-mail: {capozzi, delia,
diluna, querzoni}@diag.uniroma1.it)

Corresponding author: Gianluca Capozzi (e-mail: capozzi@diag.uniroma1.it).

This work has been carried out while Gianluca Capozzi was enrolled in the Italian National Doctorate on Artificial Intelligence run by
Sapienza University of Rome.
This work has been partially supported by projects SERICS (PE00000014) and Rome Technopole (ECS00000024) under the MUR
National Recovery and Resilience Plan funded by the European Union - NextGenerationEU and Sapienza Ateneo projects
(RM1221816C1760BF and AR1221816C754C33). Part of the computational resources have been offered by the AWS Cloud Credit
program.

ABSTRACT Binary analysis has become essential for software inspection and security assessment. As the
number of software-driven devices grows, research is shifting towards autonomous solutions using deep
learning models. In this context, a hot topic is the binary similarity problem, which involves determining
whether two assembly functions originate from the same source code. However, it is unclear how deep
learningmodels for binary similarity behave in an adversarial context. In this paper, we study the resilience of
binary similarity models against adversarial examples, showing that they are susceptible to both targeted and
untargeted (w.r.t. similarity goals) attacks performed by black-box and white-box attackers. We extensively
test three state-of-the-art binary similarity solutions against (i) a black-box greedy attack that we enrichwith a
new search heuristic, terming it Spatial Greedy, and (ii) a white-box attack in which we repurpose a gradient-
guided strategy used in attacks to image classifiers. Interestingly, the target models are more susceptible to
black-box attacks than white-box ones, exhibiting greater resilience in the case of targeted attacks.

INDEX TERMS Adversarial Attacks, Binary Analysis, Binary Code Models, Binary Similarity, Black-box
Attacks, Greedy, White-box Attacks.

I. INTRODUCTION

AN interesting problem that currently is a hot topic in
the security and software engineering research commu-

nities [1]–[3], is the binary similarity problem. That is, to
determine if two functions in assembly code are compiled
from the same source code [4]: if so, the two functions are said
similar. This problem is far from trivial: it is well-known that
different compilers and optimization levels radically change
the shape of the generated assembly code.

Binary similarity has many applications, including pla-
giarism detection, malware detection and classification, and
vulnerability detection [5]–[7]. It can also be a valid aid for a
reverse engineer as it helps with the identification of functions
taken from well-known libraries or open-source software.
Recent research [4] shows that techniques for binary simi-
larity generalize, as they are able to find similarities between
semantically similar functions.

We can distinguish binary similarity solutions between the
ones that use deep neural networks (DNNs), like [4], [8], [9],

and the ones that do not, like [1], [10]. Nearly all of the most
recent works rely on DNNs, which offer in practice state-
of-the-art performance while being computationally inexpen-
sive. This aspect is particularly apparent when compared with
solutions that build on symbolic execution or other computa-
tionally intensive techniques.

A drawback of DNN-based solutions is their sensitivity to
adversarial attacks [11] where an adversary crafts an innocu-
ously looking instance with the purpose of misleading the
target neural network model. Successful adversarial attacks
are well-documented for DNNs that process, for example, im-
ages [12]–[14], audio and video samples [15], and text [16].

In spite of the wealth of works identifying similar functions
with ever improving accuracy, we found that an extensive
study on the resilience of (DNN-based) binary similarity
solutions against adversarial attacks is missing. Indeed, we
believe binary similarity systems are an attractive target for
an adversary. As examples, an attacker: (1) may hide a ma-

VOLUME 11, 2023 1

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

licious function inside a firmware by making it similar to a
benign white-listed function, as similarly done in malware
misclassification attacks [17]; (2) may make a plagiarized
function dissimilar to the original one, analogously to source
code authorship attribution attacks [18]; or, we envision, (3)
may replace a function—entirely or partially, as in forward
porting of bugs [19]—with an old version known to have a
vulnerability and make the result dissimilar from the latter.

In this context, we can define an attack targeted when
the goal is to make a rogue function be the most similar
to a target, as with example (1). Conversely, an attack is
untargeted when the goal is to make a rogue function the
most dissimilar from its original self, as with examples (2) and
(3). In both scenarios, the adversarial instance has to preserve
the semantics (i.e., execution behavior) of the rogue function
as in the original.

In this paper, we aim to close this gap by proposing and
evaluating techniques for targeted and untargeted attacks
using both black-box (where adversaries have access to the
similarity model without knowing its internals) and white-
box (where they know also its internals) methods.

For the black-box scenario, we adopt a greedy optimizer to
modify a function by inserting a single assembly instruction
to its body at each optimization step. Where applicable, we
consider an enhanced gray-box [17] variant that, leveraging
limited knowledge of the model, chooses only between in-
structions that the model treats as distinct.

We then enrich the greedy optimizer with a novel black-
box search heuristic, where we transform the discrete space
of assembly instructions into a continuous space using a
technique based on instruction embeddings [20]. We call this
enhanced black-box attack Spatial Greedy. When using our
heuristic, the black-box attack is on par or outperforms the
gray-box greedy attack, without requiring any knowledge of
the model. For the white-box scenario, we repurpose amethod
for adversarial attacks on images that relies on gradient de-
scent [21] and use it to drive instruction insertion decisions.

We test our techniques against three binary similarity
systems—Gemini [9], GMN [22], and SAFE [4]—focusing
on three research questions: (RQ1) determining whether the
target models are more robust against targeted or untargeted
attacks; (RQ2) assessing whether the target models exhibit
greater resilience to black-box or white-box approaches; and
(RQ3) exploring how target models influence the effective-
ness of our attacks. Our results indicate that all the three mod-
els are inherentlymore vulnerable to untargeted attacks. In the
targeted scenario, the best attack technique mislead the target
models in 31.6% of instances for Gemini, 59.68% for GMN,
and 60.68% for SAFE. However, in the untargeted scenario,
these percentages increased to 53.89% for Gemini, 93.81%
for GMN, and 90.62% for SAFE. Our analysis shows that all
target models are more resilient to our white-box procedure;
we believe this is largely due to the inherent challenges of
conducting gradient-based attacks on models that use discrete
representations.

A. CONTRIBUTIONS
This paper proposes the following contributions:

• we propose to study the problem of adversarial attacks
against binary similarity systems, identifying targeted
and untargeted attack opportunities;

• we investigate black-box attacks against DNN-based
binary similarity systems, exploring an instruction in-
sertion technique based on a greedy optimizer. Where
applicable, we enhance it in a gray-box fashion for effi-
ciency, using partial knowledge of the model sensitivity
to instruction types;

• we propose Spatial Greedy, a fully black-box attack
that matches or outperforms gray-box greedy by using
a novel search heuristic for guiding the choice of the
candidates’ instructions used during the attack;

• we investigate white-box attacks against DNN-based
binary similarity systems, exploring a gradient-guided
search strategy for inserting instructions;

• we conduct an extensive experimental evaluation of our
techniques in different attack scenarios against three
systems backed by largely different models and with
high performance in recent studies [23].

II. RELATED WORKS
In this section, we first discuss loosely related approaches for
attacking image classifiers and natural language processing
(NLP) models; then, we describe attacks against source code
models. Finally, we discuss prominent attacks against models
for binary code analysis.

A. ATTACKS TO IMAGE CLASSIFIERS AND NLP MODELS
Historically, the first adversarial attacks targeted image clas-
sifiers. The crucial point for these attacks is to insert inside a
clean image instance a perturbation that should not be visible
to the human eye while being able to fool the target model, as
first pointed out by [12] and [13].
Most of the attacks modify the original instances using

gradient-guided methods. In particular, when computing an
adversarial example, they keep the weights constant while
altering the starting input in the direction of the gradient that
mimizes (or maximizes, depending on whether the attack
is targeted or untargeted) the loss function of the attacked
model. The FGSM attack [13] explicitly implements this
technique. Other attacks, such as the Carlini-Wagner [14]
one, generate a noise that is subject to Lp-norm constraints
to preserve similarity to original objects.
As observed in Section III-B, adversarial examples gen-

eration is possibly easier in the image domain than in the
textual one, due to the continuous representation of the orig-
inal objects. In the NLP domain, the inputs are discrete ob-
jects, a fact that prevents any direct application of gradient-
guided methods for adversarial examples generation. Ideally,
check perturbations to fool deepmodels for language analysis
should be grammatically correct and semantically coherent
with the original instance.

2 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

One of the earliest methodologies for attacking NLP mod-
els is presented in [16]. The authors propose attacks to mis-
lead deep learning-based reading comprehension systems by
inserting perturbations in the form of new sentences inside a
paragraph, so as to confuse the target model while maintain-
ing intact the original correct answer. The attacks proposed
in [24] and [25] focus on finding replacement strategies for
words composing the input sequence. Intuitively, valid sub-
stitutes should be searched through synonyms; however, this
strategy could fall short in considering the context surround-
ing the word to substitute. Works like [26] and [27] further
investigate this idea using BERT-basedmodels for identifying
accurate word replacements.

B. ATTACKS AGAINST MODELS FOR SOURCE CODE
ANALYSIS
This section covers some prominent attacks against models
that work on source code.

The general white-box attack of [28] iteratively substitutes
a target variable name in all of its occurrences with an alterna-
tive name until a misclassification occurs. The attack against
plagiarism detection from [18] uses genetic programming
to augment a program with code lines picked from a pool
and validated for program equivalence by checking that an
optimizer compiler removes them. The attack against clone
detectors from [29] combines several semantics-preserving
perturbations of source code using different optimization
heuristic strategies.

We highlight that these approaches have limited applicabil-
ity in the binary similarity scenario, as their perturbationsmay
not survive compilation (e.g., variable renaming) or result in
marginal differences in compiled code (e.g., turning a while-
loop into a for-loop).

C. ATTACKS AGAINST MODELS FOR BINARY CODE
ANALYSIS
Wecomplete our review of relatedworks by covering research
on evading ML-based models for analysis of binary code.

1) Attacks against malware detectors
Attacks such as [30], [31] to malware detectors based on
convolutional neural networks add perturbations in a new
non-executable section appended to a Windows PE binary.
Both use gradient-guided methods for choosing single-byte
perturbations to mislead the model in classifying the whole
binary. We emphasize that binary similarity systems analyze
executable code, meaning these attacks are ineffective in our
scenario.

Pierazzi et al. [17] explore transplanting binary code gad-
gets into a malicious Android program to avoid detection.
The attack follows a gradient-guided search strategy based on
a greedy optimization. In the initialization phase, they mine
from benign binaries code gadgets that modify features that
the classifier uses to compute its classification score. In the
attack phase, they pick the gadgets that can mostly contribute
to the (mis)classification of the currently analyzed malware

sample; they insert gadgets in order of decreasing negative
contribution, repeating the procedure until misclassification
occurs. To preserve program semantics, gadgets are injected
into never-executed code portions. Differently from our main
contribution, their attack is only applicable in a targeted
white-box scenario.
Lucas et al. [32] target malware classifiers analyzing raw

bytes. They propose a functionality-preserving iterative pro-
cedure viable for both black-box and white-box attackers.
At every iteration, the attack determines a set of applicable
perturbations for every function in the binary and applies a
randomly selected one (following a hill-climbing approach
in the black-box scenario or using the gradient in the white-
box one). Done via binary rewriting, the perturbations are
local and include instruction reordering, register renaming,
and replacing instructions with equivalent ones of identical
length. The results show that these perturbations can be effec-
tive even against (ML-based) commercial antivirus products,
leading the authors to advocate for augmenting such systems
with provisions that do not rely on ML. In the context of
binary similarity, though, we note that these perturbations
would have limited efficacy if done on a specific pair of
functions: for example, both instruction reordering and regis-
ter renaming would go completely unnoticed by Gemini and
GMN (Section VIII-A and VIII-B). Furthermore, since [32]
is mainly designed for models that classify binary programs,
it is not directly applicable in our scenario, where the output
of the model is a real value representing the distance between
the two inputs.
MAB-Malware [33] is a reinforcement learning-based ap-

proach for generating adversarial examples against PE mal-
ware classifiers in a black-box context. Adversarial examples
are generated through a multi-armed bandit (MAB) model
that has to keep the sample in a single, non-evasive state
when selecting actions while learning reward probabilities.
The goal of the optimization strategy is to maximize the total
reward. The set of applicable perturbations (which can be con-
sidered as actions) are standard PE manipulation techniques
from prior works: header manipulation, section insertion and
manipulation (e.g., adding trailing byte), and in-place ran-
domization of an instruction sequence (i.e., replacing it with
a semantically equivalent one). Each action is associated with
a specific content—a payload—added to the malware when
the action is selected. An extensive evaluation is conducted
on two popular ML-based classifiers and three commercial
antivirus products. As outlined for other works, our scenario
does not allow for the application of this approach for two
primary reasons. Firstly, this attack is specifically designed
to target classifiers. Secondly, many of the proposed trans-
formations are ineffective when applied to binary similarity
systems.

2) Attacks against binary similarity models
Concurrently to our work, a publicly available technical re-
port proposes FuncFooler [34] as a black-box algorithm for
attempting untargeted attacks against ranking systems (i.e.,

VOLUME 11, 2023 3

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

top-k most similar functions) based on binary similarity. The
key idea behind the attack is to insert instructions likely to
push the source function below the top results returned by
the search engine. Insertion points are fixed: specifically,
CFG nodes that dominate the exit points of a function. The
algorithm picks the instructions directly from those functions
with the least similarity in the pool under analysis, then it
compensates for their side effects through additional inser-
tions. Differently from their goal to attack binary similarity-
based ranking systems, our goal is to directly attack the simi-
larity function implemented by the target model; additionally,
differently from their black-box approach designed only for
untargeted attacks, we propose methodologies for assessing
the robustness of the considered systems against both targeted
and untargeted attacks, extending the evaluation to white-box
attacks.

III. BACKGROUND
In this section, we provide background knowledge for ad-
versarial attacks against models for code analysis. Then, we
introduce a categorization of semantics-preserving perturba-
tions for binary functions.

A. ADVERSARIAL KNOWLEDGE
We can describe a deep learning model through different
aspects: training data, layers architecture, loss function, and
weights parameters. Having complete or partial knowledge
about such elements can facilitate an attack from a compu-
tational point of view. According to seminal works in the
area [17], [35], we can distinguish between:

• white-box attacks, where the attacker has perfect knowl-
edge of the target model, including all the dimensions
mentioned before. These type of attacks are realistic
when the adversary has direct access to the model (e.g.,
an open-source malware classifier);

• gray-box attacks, where the attacker has partial knowl-
edge of the target model. For example, they have knowl-
edge about feature representation (e.g., categories of
features relevant for feature extraction);

• black-box attacks: the attacker has zero knowledge of
the target model. Specifically, the attacker is only aware
of the task the model was designed for and has a rough
idea of what potential perturbations to apply to cause
some feature changes [35].

Different attack types may suit different scenarios best.
A white-box attack, for example, could be attempted on
an open-source malware classifier. Conversely, a black-box
attack would suit also a model hosted on a remote server to
interrogate, as with a commercial cloud-based antivirus.

B. INVERSE FEATURE MAPPING PROBLEM
In the following, we refer to the input domain as problem
space and to all its instances as problem-space objects.

Deep learning models can manipulate only continuous
problem-space objects. When inputs have a discrete rep-
resentation, a first phase must map them into continuous

push rbp
mov rbp, rsp
mov [rbp-0x8], rdi
lea rdx, [rip+0x0]
mov rax, [rbp-0x8]
mov rdx, [rbp-0x10]
mov [rax+0xe0], rdx

push rbp
mov rbp, rsp
mov edx, 0x0
mov esi, 0x89
add rax, 0x1
mov [rbp-0x10], rax
test rax, rax

Fe
at

ur
e

m
ap

pi
ng

 fu
nc

tio
n

Problem space Feature space

FIGURE 1. A feature mapping function maps problem-space objects into
feature vectors. The two boxed binary functions implement similar
functionalities and are mapped to two points close in the feature space.

instances. The phase usually relies on a feature mapping
function (Figure 1) whose outputs are feature vectors. The set
of all possible feature vectors is known as the feature space.
Traditional white-box attacks against deep learning mod-

els solve an optimization problem in the feature space by
minimizing an objective function in the direction following
its negative gradient [21]. When the optimization ends, they
obtain a feature vector that corresponds to a problem-space
object representing the generated adversarial example.
Unfortunately, given a feature vector, it is not always pos-

sible to obtain its problem-space representation. This issue is
called the inverse feature mapping problem [17].
For code models, the feature mapping function is neither

invertible nor differentiable. Therefore, one cannot under-
stand how to modify an original problem-space object to
obtain the given feature vector. In particular, the attacker
has to employ approximation techniques that create a feasi-
ble problem-space object from a feature vector. Ultimately,
mounting an attack requires a manipulation of a problem-
space object via perturbations guided by either gradient-space
attacks (as in the white-box case above) or ‘‘gradient-free’’
optimization techniques (as with black-box attacks). We dis-
cuss perturbations specific to our context next.

Transformation

NO-CFG
modification

CFG
modification

Node
addition/removal

No-node
addition

DBA NS NM CP IBR

IR SPR DSL RR

FIGURE 2. Taxonomy of semantics-preserving perturbations suitable for
the proposed attacks. Acronyms are spelled out in the body of the paper.

C. SEMANTICS-PRESERVING PERTURBATIONS OF
PROBLEM-SPACE OBJECTS
In this section, we discuss how to modify problem-space
objects in the specific case of binary code models working
on functions. To this end, we review and extend perturbations

4 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

from prior works [17], [32], [33], identifying those suitable
for adversarial manipulation of functions.

For our purpose, we seek tomodify an original binary func-
tion f into an adversarial binary example fadv that preserves
the semantics of f ; intuitively, this restricts the set of avail-
able perturbations for the adversary. We report a taxonomy
of possible semantics-preserving perturbations in Figure 2,
dividing them according to how they affect the binary layout
of the function’s control-flow graph (CFG).

push ebp
subl esp, 0x12
xorl ebx, ebx
notl ebx
movl ebp, ebx
test eax, eax
sarl ebp, 0x8
xorl ebp, [esp+0x8]
decl edi

(a) Original example

push ebp
subl esp, 0x12
xorl ebx, ebx
notl ebx
test eax, eax
movl ebp, ebx
sarl ebp, 0x8
xorl ebp, [esp+0x8]
decl edi

(b) IR

push ebp
subl esp, 0x12
xorl ecx, ecx
notl ecx
movl ebp, ecx
test eax, eax
sarl ebp, 0x8
xorl ebp, [esp+0x8]
decl edi

(c) SPR

push ebp
addl esp, -0x12
xorl ebx, ebx
notl ebx
movl ebp, ebx
test eax, eax
sarl ebp, 0x8
xorl ebp, [esp+0x8]
decl edi

(d) RR

FIGURE 3. Examples of semantics-preserving perturbations that do not
alter the binary CFG layout. We modify the assembly snippet in (a) by
applying, in turn, (b) Instruction Reordering, (c) Semantics-Preserving
Rewriting, and (d) Register Renaming. Altered instructions are in red.

Among CFG-preserving perturbations, we identify:

• (IR) Instruction Reordering: reorder independent in-
structions in the function;

• (SPR) Semantics-Preserving Rewriting: substitute a
sequence of instructions with a semantically equivalent
sequence;

• (DSL) Modify the Data-Section Layout: modify the
memory layout of the .data section and update all the
global memory offsets referenced by instructions;

• (RR) Register Renaming: change all the occurrences of
a register as instruction operand with a register currently
not in use or swap the use of two registers.

Figure 3 shows examples of their application. As for per-
turbations that affect the (binary-level) CFG layout, we can
identify the ones that involve adding or deleting nodes:

• (DBA)DeadBranchAddition: add dead code in a basic
block guarded by an always-false branch;

• (NS) Node Split: split a basic block without altering the
semantics of its instructions (e.g., the original block will
jump to the one introduced with the split);

• (NM) Node Merge: merge two basic blocks when se-
mantics can be preserved. For example, by using pred-
icated execution to linearize branch-dependent assign-
ments as conditional mov instructions [36].

And the ones that leave the graph structure unaltered:

• (CP) Complement Predicates: change the predicate of
a conditional branch and the branch instruction with
their negated version;

• (IBR) Independent Blocks Reordering: change the
order in which independent basic blocks appear in the
binary representation of the function.

IV. THREAT MODEL AND PROBLEM DEFINITION
In this section, we define our threat model together with the
problem of attacking binary similarity models.

A. THREAT MODEL
The focus of this work is to create adversarial instances that
attack a model at inference time (i.e., we do not investigate
attacks at training time). Following the description provided
in Section III-A, we consider two different attack scenarios:
respectively, a black-box and a white-box one. In the first
case, the adversary has no knowledge of the target binary sim-
ilarity model; nevertheless, we assume they can perform an
unlimited number of queries to observe the output produced
by the model. In the second case, we assume that the attacker
has perfect knowledge of the target binary similarity model.

B. PROBLEM DEFINITION
Let sim be a similarity function that takes as input two func-
tions, f1 and f2, and returns a real number, the similarity score
between them, in [0, 1].
We define two binary functions to be semantically equiv-

alent if they are two implementations of the same abstract
functionality. We assume that there exists an adversary that
wants to attack the similarity function. The adversary can
mount two different kind of attacks:

• Targeted attack. Given two binary functions, f1 (identi-
fied as source) and f2 (identified as target), the adversary
wants to find a binary function fadv semantically equiv-
alent to f1 such that: sim(fadv, f2) ≥ τt, where τt is a
success threshold1 chosen by the attacker depending on
the victim at hand.

• Untargeted attack. Given a binary function f1, the ad-
versary goal consists of finding a binary function fadv se-
mantically equivalent to f1 such that: sim(f1, fadv) ≤ τu.
The threshold τu is the analogous of the previous case
for the untargeted attack scenario.

Loosely speaking, in case of targeted attack, the attacker
wants to create an adversarial example that is as similar as
possible to a specific function, as in the example scenario (1)
presented in Section I. In case of untargeted attack, the goal
of the attacker consists of creating an adversarial example that
is as dissimilar as possible from its original version, as in the
example scenarios (2) and (3) also from Section I.

1Although fadv and f2 are similar for the model, they are not semantically
equivalent: this is precisely the purpose of an attack that wants to fool the
model to consider them as such, while they are not.

VOLUME 11, 2023 5

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

[3, 8, …]

[0.80, 0.81, …]

getPositions

Add
Actions

Binary
similarity

model
Fail

Success

ε-greedy

f1

similarities

f2 fadv

FIGURE 4. Overall workflow of the black-box ε-greedy perturbation-selection strategy in the targeted scenario.

(d)

(a)

int foo(int n) {
 int cond = 1;

 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

int foo(int n) {
 int cond = 1;
 int var_r_12x = 0;
 if(var_r_12x == 1){}
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

...

mov -0x10(%rbp), %rdx
.
.
.

leal 2(%rax), %ecx)

CAND

int foo(int n) {
 int cond = 1;
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

f1

int foo(int n) {
 int cond = 1;
 int var_r_12x = 0;
 if(var_r_12x == 1){
 __asm__ volatile (mov -0x10(%rbp), %rdx);
 }
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

int foo(int n) {
 int cond = 1;
 int var_r_12x = 0;
 if(var_r_12x == 1){
 __asm__ volatile (leal 2(%rax), %ecx);
 }
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

(b)

(c)

int foo(int n) {
 int cond = 1;
 int var_r_12x = 0;
 if(var_r_12x == 1){
 __asm__ volatile (mov -0x10(%rbp), %rdx);
 }
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

mov -0x10(%rbp), %rdx
mov $0x15, %rdi

.

.

.
leal 2(%rax), %ecx)

CAND

int foo(int n) {
 int cond = 1;
 int var_r_12x = 0;
 if(var_r_12x == 1){
 __asm__ volatile (mov -0x10(%rbp), %rdx);
 __asm__ volatile (mov $0x15, %rdi);
 __asm__ volatile (lea 0x8(%rdx), %rbx);
 __asm__ volatile (add $0x20, %rax);
 }
 if (n == 0 || n == 1) { ... }
 else { ... }
 return cond;
}

fadv...

FIGURE 5. Toy example describing how the source function f1 is modified during the various steps of our Spatial Greedy attack. We first identify the set of
available positions and initialize the candidates’ set CAND (a). Then, we enumerate all the possible perturbations (b) and choose one according to the
ε-greedy strategy while updating CAND according to the Spatial Greedy heuristic (c). This process (d) is repeated until a successful adversarial example is
generated or we reach a maximum number of iterations.

C. PERTURBATION SELECTION
Given a binary function f1, our attack consists in applying to
it perturbations that do not alter its semantics.

To study the feasibility of our approach, we choose dead
branch addition (DBA) among the suitable perturbations out-
lined in Section III-C. We find DBA adequate for this study
for two reasons: it is sufficiently expressive so as to affect
heterogeneous models (which may not hold for others2) and
its implementation complexity for an attacker is fairly limited.
Nonetheless, other choices remain possible, as we will further
discuss in Section XIII.

2For example, basic block-local transformations such as IR and RR would
have limited efficacy on models that study an individual block for its instruc-
tion types and counts or other coarse-grained abstractions. This is the case
with Gemini and GMN that we attack in this paper.

At each application, our embodiment of DBA inserts in the
binary code of f1 one or more instructions in a new or existing
basic block guarded by a branch that is never taken at runtime
(i.e., we use an always-false branch predicate).

Such a perturbation can be done at compilation time or on
an existing binary function instance. For our study, we apply
DBA during compilation by adding placeholder blocks as in-
line assembly, which eases the generation of many adversarial
examples from a single attacker-controlled code. State-of-the-
art binary rewriting techniques would work analogously over
already-compiled source functions.

We currently do not attempt to conceal the nature of our
branch predicates for preprocessing robustness, which [17]
discusses as something that attackers should be wary of to
mount stronger attacks. We believe off-the-shelf obfuscations

6 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

(e.g., opaque predicates, mixed boolean-arithmetic expres-
sions) or more complex perturbation choices may improve
our approach in this respect. Nevertheless, our main goal was
to investigate its feasibility in the first place.

V. BLACK-BOX ATTACK: SOLUTION OVERVIEW
In this section, we describe our black-box attack. We first
introduce our baseline (named Greedy), highlighting its lim-
itations. We then move to our main contribution in the black-
box scenario (named Spatial Greedy). Figure 4 depicts a
general overview of our black-box approach.

A. GREEDY
The baseline black-box approach we consider for attack-
ing binary function similarity models consists of an itera-
tive perturbation-selection rule that follows a greedy opti-
mization strategy. Starting from the original sample f1, we
iteratively apply perturbations T1,T2, . . . ,Tk selected from
a set of available ones, generating a series of instances
fadv1 , fadv2 , . . . , fadvk . This procedure ends upon generating an
example fadv meeting the desired similarity threshold, other-
wise the attack fails after δ̄ completed iterations.

For instantiating Greedy using DBA, we reason on a set of
positions BLK for inserting dead branches in function f1 and a
set of instructions CAND, which we call the set of candidates.
Each perturbation consists of a ⟨bl,in⟩ pair made of the
branch bl ∈ BLK and an instruction in ∈ CAND to check
insert in the dead code block guarded by bl.

The naive perturbation-selection rule (i.e., greedy) at each
step selects the perturbation that, in case of targeted at-
tack, locally maximizes the relative increase of the objective
function. Conversely, for an untargeted attack, the optimizer
selects the perturbation that locally maximizes the relative
decrease of the objective function.

This approach, however, may be prone to finding local
optima. To avoid this problem, we choose as our Greedy
baseline an ε-greedy perturbation-selection rule. Here, we
select with a small probability ε a suboptimal perturbation
instead of the one that the standard greedy strategy picks, and
with probability 1−ε the one representing the local optimum.
In case of targeted attack, the objective function is the

similarity between fadv and the target function f2 (formally,
sim(fadv, f2)) while it is the negative of the similarity between
fadv and the original function in case of untargeted attack (for-
mally, −sim(f1, fadv)). In the following, we only discuss the
maximization strategy followed by targeted attacks; mutatis
mutandis, the same rationale holds for untargeted attacks.

1) Limitations of the Complete Enumeration Strategy
At each step, Greedy enumerates all the applicable pertur-
bations computing the marginal increase of the objective
function, thus resulting in selecting an instruction in by
enumerating all the possible instructions of the considered set
of candidates CAND for each position bl ∈ BLK.
Unfortunately, the Instruction Set Architecture (ISA) of a

modernCPUmay consist of a large number of instructions. To

give an example, consider the x86-64 ISA: according to [37],
it has 981 unique mnemonics and a total of 3,684 instruction
variants (without counting register operand choices for them).
Therefore, it would be unfeasible to have a CAND set that
covers all possible instructions of an ISA.
This means that the size of CAND must be limited. One

possibility is to use hand-picked instructions. However, this
approach has two problems. Such a set could not cover all the
possible behaviors of the ISA, missing fundamental aspects
(for example, leaving vector instructions uncovered); further-
more, this effort has to be redone for a new ISA. There is also a
more subtle pitfall: a set of candidates fixed in advance could
include instructions that the specific binary similarity model
under attack deems as not significant.
On specific models, it may still be possible to use a small

set of candidates profitably, enabling a gray-box attack strat-
egy forGreedy. In particular, one can restrict the set of instruc-
tions to the ones that effectively impact the features extracted
by the attacked model (which obviously requires knowledge
of the features it uses; hence, the gray-box characterization).
In such cases, this strategy is equivalent to the black-box
Greedy attack that picks from all the instructions in the ISA,
but computationally much more efficient.

B. SPATIAL GREEDY
In this section, we extend the baseline approach by intro-
ducing a fully black-box search heuristic. To differentiate
between the baseline solution and the heuristic-enhanced one,
we name the latter Spatial Greedy.
When using this heuristic, the black-box attack overcomes

all the limitations discussed for Greedy using an adaptive
procedure that dynamically updates the set of candidates
according to a feedback from the model under attack without
requiring any knowledge of it.
In Spatial Greedy, we extend the ε-greedy perturbation-

selection strategy by adaptively updating the set of candidates
that we use at each iteration. Using instructions embedding
techniques, we transform each instruction in ∈ CAND into
a vector of real values. This creates vectors that partially
preserve the semantics of the original instructions.
Chua et al. [38] showed that such vectors may be grouped

by instruction semantics, creating a notion of proximity be-
tween instructions: for example, vectors representing arith-
metic instructions are in a cluster, vectors representing
branches in another, and so on.
Here, at each step, we populate a portion of the set of

candidates by selecting the instructions that are close, in the
embedding metric space, to instructions that have shown a
good impact on the objective function. The remaining portion
of the set is composed of random instructions. We discuss our
choices for instruction embedding techniques and dynamic
candidates selection in the following.
In the experimental section, for the black-box realm, we

will compare Spatial Greedy against the Greedy approach,
opting for the computationally efficient gray-box flavor of
Greedy when allowed by the specific model under study.

VOLUME 11, 2023 7

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

mov -0x10(%rbp), %rdx

CAND = [.]
c

rNc/k

Embedding space

mov $0x15, %rdi

FIGURE 6. Dynamic update of the set of candidates. The mov instruction is
the greedy action for the current iteration and is mapped to the blue
point in the instruction embedding space. The set of candidates is
updated selecting c/k neighbours of the considered top-k perturbation
(represented in red), c − c/k instructions among the closest neighbours
of the remaining top-k greedy perturbations, and rN random instructions.

1) Instruction Embedding Space
We embed assembly instructions into numeric vectors using
an instruction embedding model [20]. Given such a modelM
and a set I of assembly instructions, we map each i ∈ I to a
vector of real values i⃗ ∈ Rn, usingM . The model is such that,
for two instructions having similar semantics, the embeddings
it produces will be close in the metric space.

2) Dynamic Selection of the Set of Candidates
The process for updating the set of candidates for each iter-
ation of the ε-greedy perturbation-selection procedure repre-
sents the focal point of Spatial Greedy.

Let N be the size of the set of candidates CAND. Initially,
we fill it with N random instructions. Then, at each iteration
of the ε-greedy procedure, we update CAND by replacing
the current instructions with rN random instructions, where
r ∈ [0, 1), and c instructions we select among the closest
neighbors of the instructions composing the top-k greedy
actions of the last iteration.

In case of a targeted attack, the top-k greedy perturbations
are the k perturbations that, at the end of the last iteration,
achieved the highest increase of the objective function. To
keep the size of the set stable at value N , we take the closest
c/k neighbors of each top-k action3.
The rationale of having r random and c selected instruc-

tions is seeking a balance between exploration and exploita-
tion. With the random instructions, we randomly sample the
solution space to escape from a possibly local optimum found
for the objective function. With the selected instructions, we
exploit the part of the space that in the past has brought the
best solutions. Figure 6 provides a pictorial representation of
the update procedure.

3We also apply rounding so that we can work with integer numbers.

Algorithm 1 Spatial Greedy procedure (targeted case)
Input: source function f1, target function f2, similarity threshold τt, max
number of dead branches B, max number of instructions to be inserted δ̄, max
number of instructions to be tested N , max number of random instructions r ,
max number of neighbours c, probability of selecting a random perturbation
ε.
Output: adversarial sample fadv.
Definitions:

• The function getPositions(f1,B) identifies B positions inside f1 where
it is possible to insert dead branches.

• The function getRandomInstructions(N) samples uniformly N in-
structions from the entire ISA.

• The operator ⊕ indicates the insertion into a function of a certain
instruction into a specific block.

• The function selectGreedy(·) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns the ⟨bl,in⟩ perturbation associated
to the maximum currSim value.

• The function selectRandom(·) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns a perturbation uniformly sampled.

• The function getTopK(·,K) takes as input a vector of pairs
⟨⟨bl,in⟩, currSim⟩ and returns the instructions associated to the top-
K greedy actions.

• The function updateInstructions(·, r, c) takes as input a vector of
instructions and returns a vector containing c of their neighbours and
r instructions sampled uniformly at random.

1: fadv ← f1
2: instr ← 0
3: BLK← getPositions(f1,B)
4: CAND← getRandomInstructions(N)

a

5: sim← sim(fadv, f2)
6: while sim ≤ τt AND instr < δ̄ do
7: iterSim← sim
8: iterBlock ← ⟨⟩
9: testedPerts← []
10: for ⟨bl,in⟩ ∈ BLK× CAND do
11: f adv ← fadv ⊕ ⟨bl,in⟩
12: currSim← sim(f adv, f2)
13: testedPerts.append(⟨⟨bl,in⟩, currSim⟩)

b

14: prob← uniform(0, 1)
15: if prob < ε then
16: iterPert, iterSim← selectGreedy(testedPerts)
17: else
18: iterPert, iterSim← selectRandom(testedPerts)
19: fadv ← fadv ⊕ iterPert
20: elected ← getTopK(testedPerts,K)
21: CAND← updateInstructions(elected , r, c)

c

22: sim← iterSim
23: instr ← instr + 1

d

24: return fadv

We present the complete description of Spatial Greedy
in case of targeted attack in Algorithm 1 together with a
simplified execution example in Figure 5. The first step (a)
consists in identifying the positions BLK where to intro-
duce dead branches (function getPositions(f1,B) at line 3)
and initializing the set of candidates CAND with N random
instructions (function getRandomInstructions(N) at line 4).
Then, during the iterative procedure (d), we first enumerate
all the possible perturbations (b). Then (c), we apply the
perturbation-selection rule according to the value of ε, and
we get the top-k greedy perturbations (line 20) as depicted in
Figure 6. Finally, we update the set of candidates (line 21).

VI. WHITE-BOX ATTACK: SOLUTION OVERVIEW
As pointed out in Section III-A, in a white-box scenario the
attacker has a perfect knowledge of the target deep learning

8 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

model, including its loss function and gradients. We discuss
next how we can build on them to mount an attack.

A. GRADIENT-GUIDED CODE ADDITION METHOD
White-box adversarial attacks have been largely investigated
against image classifiers by the literature, resulting in valu-
able effectiveness [13]. Our attack strategy for binary simi-
larity derives from the design pattern of the PGD attack [21],
which iteratively targets image classifiers.

We call our proposed white-box attack Gradient-guided
Code Addition Method (GCAM). It consists in applying a
set of perturbations using a gradient-guided strategy. In the
case of a targeted attack, our goal is to minimize the loss
function of the attacked model on the given input while keep-
ing the perturbation size small and respecting the semantics-
preserving constraint. We achieve this by using the Lp-norm
as soft constraint. On the other hand, for an untargeted attack,
we aim to maximize the loss function while also keeping the
size of the perturbation small.

Because of the inverse feature mapping problem, gradient
optimization-based approaches cannot be directly applied in
our context (Section III-B). We need a further (hard) con-
straint that acts on the feature-space representation of the
input binary function. This constraint strictly depends on the
target model: we will further investigate its definition in Sec-
tion VIII. In the following, we focus on the loss minimization
strategy argued for targeted attacks. As before, we can easily
adapt the same concepts to the untargeted case.

We can describe a DNN-based model for binary similarity
as the concatenation of the two functions λ and simv. In par-
ticular, λ is the function that maps a problem-space object to
a feature vector (i.e., the feature mapping function discussed
in Section III-B), while simv is the neural network computing
the similarity given the feature vectors.

Given two binary functions f1 and f2, we aim to find a
perturbation δ that minimizes the loss function of simv, which
corresponds to maximize simv(λ(f1))+δ, λ(f2)). To do so, we
use an iterative strategy where, during each iteration, we solve
the following optimization problem:

min L(simv(λ(f1) + δ, λ(f2)), θ) + ϵ||δ||p, (1)

where L is the loss function, θ are the weights of the target
model, and ϵ is a coefficient in [0,∞).
We randomly initialize the perturbation δ and then update

it at each iteration by a quantity given by the negative gradient
of the loss function L. The vector δ has several components
equal to zero and it is crafted so that it modifies only the
(dead) instructions in the added blocks. The exact procedure
depends on the target model: we return to this aspect in
Section VIII.

Notice that the procedure above allows us to find a per-
turbation in the feature space, while our final goal is to
find a problem-space perturbation to modify the function f1.
Therefore, we derive from the perturbation δ a problem-space
perturbation δp. The exact technique is specific to the model
we are attacking, as we further discuss in Section VIII.

The common idea behind all technique instances is to find
the problem-space perturbation δp whose representation in
the feature space is the closest to δ. Essentially, we use a
rounding-based inverse strategy to solve the inverse feature
mapping problem that accounts to rounding the feature space
vector to the closest vector that corresponds to an object
in the problem space. The generated adversarial example is
fadv = f1 + δp. As for the black-box scenario, the process
ends whenever we reach a maximum number of iterations or
the desired threshold for the similarity value.

VII. COMPARISON BETWEEN THE ATTACKS
In this section, we present a more direct comparison between
the three proposed attack methodologies.
We summarize in Table 1 the key differences according to

four interesting aspects: attacker’s knowledge, perturbation
type, usage of the candidates’ set, and usage of an additional
instruction embedding model.
From a technical perspective, GCAM is a white-box attack

that assumes an attacker having a complete knowledge of the
target model’s internals. Contrarily, both Spatial Greedy and
Greedy are black-box approaches, meaning that they can be
easily adapted to attack any binary similarity model, without
having any prior knowledge. This distinction according to
the attacker’s knowledge underlines a more subtle difference
among the approaches; indeed, while the two black-box at-
tacks operate in the problem space producing valid adversar-
ial examples, GCAM initially produces perturbations in the
feature space, which must then be converted into problem
space objects using a rounding process.
Looking at more practical aspects, both Greedy and Spa-

tial Greedy depend on the concept of candidates’ set, while
GCAM leverages the internals of the target model to guide the
choice of the instructions to insert into the function according
to the objective function. Specifically, GCAM can potentially
utilize the entire set of instructions encountered by the tar-
get model during training, while the black-box methods are
constrained to a predetermined set of instructions that can be
tested during each iteration. As highlighted in Section V-A1,
the usage of a manually-crafted candidates’ set represents the
main weakness of the Greedy procedure, which we addressed
with the Spatial Greedy heuristic proposing an adaptive set
based on the usage of instruction embeddings.
Finally, when considering Spatial Greedy, it is important

to note that one should train from scratch an instruction
embedding model to effectively apply the embedding based
search heuristic. However, we remark that the model has to be
trained only once and then it can be reused for all the attacks
against binary for a certain ISA.

VIII. TARGET SYSTEMS
In this section, we illustrate the three models we attacked:
Gemini [9], GMN [22], and SAFE [4].
We selected the models by conducting a literature review

[23] to identify plausible candidates. We then analyzed the
characteristics of existing binary similarity systems, choosing

VOLUME 11, 2023 9

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

TABLE 1. Comparison and underlying principles of the three attack techniques

Greedy Spatial Greedy GCAM

Knowledge Black-box / Gray-box Black-box White-box

Perturbation type Problem-space Problem-space Feature-space + rounding

Candidates’ set Static Dynamic Not required

Instructions embedding model Not required Required Not required

(a) (b)

(c)

movq %rax, %rcx
movq %rax, %rcx
addq $0x30, %rax

(d)

<latexit sha1_base64="NVCuZ3s1SGhb7tMg53D9XHw6+OQ=">AAACQnicbVBNT9tAEF1DWyClJcCRy4qoEifLhgh6QULiwglRiQBSbEXjzSRZZb22dseVIsv/ip/AnwCJE5y4oV576Mb4wEff6b03Mzs7L8mVtBQEt97C4qfPX5aWV1pfV799X2uvb1zYrDACeyJTmblKwKKSGnskSeFVbhDSROFlMj2e1y9/o7Ey0+c0yzFOYazlSAogZw3ap5HCEfWjBMdSl2AMzKpSVFwPQn7IQ/+AR5ETu04E/v6L2KvFHo9QD5sRHhk5nlA8aHcCP6jBP5KwIR3W4GzQvo+GmShS1CQUWNsPg5xi9ypJobBqRYXFHMQUxth3VEOKNi7ruyv+o7BAGc/RcKl4beLriRJSa2dp4jpToIl9X5ub/6v1Cxr9jEup84JQi/kikgrrRVYY6QJFPpQGiWD+c+RScwEGiNBIDkI4s3AJt1we4fvrP5KLXT/c97u/up2jbpPMMtti22yHheyAHbETdsZ6TLBrdsce2KN34z15z96fl9YFr5nZZG/g/f0HqrqtbA==</latexit>2
4

n1 = 1.7
n2 = 0.6
n3 = 0.3

3
5

<latexit sha1_base64="z6rPi8n0yf9vR5tK1T3HphFP01M=">AAACPHicbZA9SwNBEIb3/DZ+RS1tFoNgFe40qI0g2FhGMCrkjjC3mcTFvb1jd04IR/6SP8FfYWOhlZ3YWrtJDvyc6uF9Z3Z23jhT0pLvP3lT0zOzc/MLi5Wl5ZXVter6xqVNcyOwJVKVmusYLCqpsUWSFF5nBiGJFV7Ft6cj/+oOjZWpvqBBhlECfS17UgA5qVM9CxX2qB3G2Je6AGNgMCzEkOtOwI+5z8PQ4d4X7k8Qdbds5qGR/RuKOtWaX/fHxf9CUEKNldXsVJ/DbiryBDUJBda2Az+jyL1KUigcVsLcYgbiFvrYdqghQRsV44uHfCe3QCnP0HCp+FjE7xMFJNYOkth1JkA39rc3Ev/z2jn1jqJC6iwn1GK0iKTC8SIrjHRRIu9Kg0Qw+jlyqbkAA0RoJAchnJi7bCsuj+D39X/hcq8eHNQb543aSaNMZoFtsW22ywJ2yE7YGWuyFhPsnj2yZ/biPXiv3pv3Pmmd8sqZTfajvI9PfZCsBQ==</latexit>2
4

n1 = 0
n2 = 0
n3 = 0

3
5

<latexit sha1_base64="0zMx4HmzMA5Y5n7h1kuEdeaVpwQ=">AAACPHicbZA9SwNBEIb3/DZ+RS1tFoNgFe5iUBtBsLGMYFTIHWFuM4mLe3vH7pwQjvwlf4K/wsZCKzuxtXaTXOHXVA/vO7Oz88aZkpZ8/9mbmZ2bX1hcWq6srK6tb1Q3t65smhuBbZGq1NzEYFFJjW2SpPAmMwhJrPA6vjsb+9f3aKxM9SUNM4wSGGjZlwLISd3qeaiwT50wxoHUBRgDw1EhRlx3A37CGzwMHTYcBlM8cOjzEHWvbOahkYNbirrVml/3J8X/QlBCjZXV6lZfwl4q8gQ1CQXWdgI/o8i9SlIoHFXC3GIG4g4G2HGoIUEbFZOLR3wvt0Apz9BwqfhExO8TBSTWDpPYdSZAt/a3Nxb/8zo59Y+jQuosJ9RivIikwskiK4x0USLvSYNEMP45cqm5AANEaCQHIZyYu2wrLo/g9/V/4apRDw7rzYtm7bRZJrPEdtgu22cBO2Kn7Jy1WJsJ9sCe2At79R69N+/d+5i2znjlzDb7Ud7nF4KwrAg=</latexit>2
4

n1 = 2
n2 = 1
n3 = 0

3
5

<latexit sha1_base64="r1bHj3tG2BpZztIKU/WGNNzIJV8=">AAACMXicbZDPSsNAEMY39X/9F/XoZbEIglCStqiXQsGLRwVrC20Im+2oSzebsDsRJPRpfASfwquePAji1ZcwiTnU1jl9/L4ZZuYLYikMOs67VVlYXFpeWV2rrm9sbm3bO7s3Jko0hy6PZKT7ATMghYIuCpTQjzWwMJDQC8bnud97AG1EpK7xMQYvZHdK3ArOMEO+3X6gbar81J3QIR9FSJNCH+esMcUaJWtOsebEt2tO3SmKzgu3FDVS1qVvfwxHEU9CUMglM2bgOjF6KdMouIRJdZgYiBkfszsYZFKxEIyXFm9O6GFiGEY0Bk2FpAWE6YmUhcY8hkHWGTK8N7NeDv/zBgnennmpUHGCoHi+CIWEYpHhWmT5AR0JDYgsvxyoUJQzzRBBC8o4z2CSBVrN8nBnv58XN426e1JvXbVqnVaZzCrZJwfkiLjklHTIBbkkXcLJE3khr+TNerberU/r67e1YpUze+RPWd8/RRioBw==</latexit>

v = n1 · u1 + n2 · u2 + n3 · u3

<latexit sha1_base64="BKW4HW+rI7Glt1B5C7nZjWYbReA=">AAACDHicbVC7SgNBFJ31GeNr1UawGQyCVdiVoHYGbCwjmAckS5id3MQhsw9m7gbCsn6Cvda2WtmI2PoPFv6Lu5sUmniqwzn3zrlz3FAKjZb1ZSwsLi2vrBbWiusbm1vb5s5uQweR4lDngQxUy2UapPChjgIltEIFzHMlNN3hZeY3R6C0CPwbHIfgeGzgi77gDFOpa+538jdiV0aQdDyGt24/9oJR0jVLVtnKQeeJPSWli7eHDI+1rvnd6QU88sBHLpnWbdsK0YmZQsElJMVOpCFkfMgG0E6pzzzQTpynJ/Qo0gwDGoKiQtJchN8bMfO0HntuOpndqGe9TPzPa0fYP3di4YcRgs+zIBQS8iDNlUirAdoTChBZdjlQ4VPOFEMEJSjjPBWjtKti2oc9+/t50jgp26flyrVVqlbIBAVyQA7JMbHJGamSK1IjdcLJHXkiz+TFuDdejXfjYzK6YEx39sgfGJ8/RLKg2Q==</latexit>mov
<latexit sha1_base64="22q25auHaiI33omoWjEU/uP3l+c=">AAACC3icbVC7TsNAEDyHd3gZKChoTkRIVJGNIqADiYYySCQgJVa0Pm/gxPmhuzVSZPkT+ABoaaGiAtHyERT8C7ahAMJUo5ndm73xEyUNOc67VZuYnJqemZ2rzy8sLi3bK6tdE6daYEfEKtbnPhhUMsIOSVJ4nmiE0Fd45l8dlf7ZNWoj4+iURgl6IVxEcigFUCEN7PV+9UamMcj7IdClP8wgCPKB3XCaTgU+Ttxv0jh4vi1x1x7YH/0gFmmIEQkFxvRcJyEvA01SKMzr/dRgAuIKLrBX0AhCNF5Whed8KzVAMU9Qc6l4JeLPjQxCY0ahX0yWN5q/Xin+5/VSGu57mYySlDASZRBJhVWQEVoWzSAPpEYiKC9HLiMuQAMRaslBiEJMi6rqRR/u39+Pk+5O091ttk7cxmGLfWGWbbBNts1ctscO2TFrsw4TLGf37IE9WjfWk/VivX6N1qzvnTX2C9bbJyv6oDo=</latexit>

add
<latexit sha1_base64="iciyK6mlBXFjulktGkbmeFaIAjI=">AAACN3icbVDLSgNBEJz1GeMjUY9eBoOgIGFXovFmIAgeI5gYSEKYnXTikNkHM71CWPaD/ATxI7yag3gTPfoHzq4e1NiHoaiu6uppN5RCo21Prbn5hcWl5dxKfnVtfaNQ3Nxq6SBSHJo8kIFqu0yDFD40UaCEdqiAea6Ea3dcT/vXt6C0CPwrnITQ89jIF0PBGRqqX6x3BzA03mxSbHygkliN3CR2yvYhtcvV4/S1k3z3p6TrMbxxhzFnUib9YskosqKzwPkGpVrh/ewg/3De6Befu4OARx74yCXTuuPYIfZiplBwCSYq0hAyPmYj6BjoMw90L87yE7oXaYYBDUFRIWlGwk+H2VDriecaZbqk/ttLyf96nQiHp71Y+GGE4PM0CIWELEhzJcwVgQ6EAkSWbg5U+JQzxRBBCco4N2Rkzpo393D+/n4WtI7Kzkm5cumUahXyVTmyQ3bJPnFIldTIBWmQJuHkjjySJzK17q0X69V6+5LOWd+ebfKrrI9P1dau5Q==</latexit>

call

FIGURE 7. GCAM attack against Gemini. Once obtained the initial CFG of the function f1, we initialize an empty dead branch in one of the available
positions (a). In particular, each node is represented as a feature vector v , which is the linear combination of three embedding vectors corresponding to
three different categories of instructions (green block). We then iteratively apply the gradient descent to modify the coefficients nj associated to the
instruction vectors (b), obtaining a vector of non-integer values. Finally, we round the obtained coefficients to the closest integer values (c) and, (d), we
insert into the dead branch as many instructions belonging to the class j as specified by the coefficient nj .

models that are fundamentally different from one another.
This approach allows us to test the generality of our solution.
Specifically, the three models we selected can be distin-
guished by the following features:

• NN architecture: Both Gemini and GMN are GNN-
based models while SAFE is a RNN-based one.

• Input representation: BothGemini andGMN represent
functions through their CFGswhile SAFE uses the linear
disassembly.

• Feature mapping process: Both Gemini and GMN use
manual features from the CFG nodes, while SAFE learns
features using an instruction embedding model.

In the following, we provide an overview of the internal
workings of the models and then discuss specific provisions
for the Greedy (Section V-A) and GCAM (Section VI) at-
tacks. Notably, Spatial Greedy needs no adaptations.

A. GEMINI
Gemini [9] represents functions in the problem space through
their Attributed Control Flow Graph (ACFG). An ACFG is a
control flow graph where each basic block consists of a vector
of manual features (i.e., node embeddings).

The focal point of this approach consists of a graph neural
network (GNN) based on the Structure2vec [39] model that
converts the ACFG into an embedding vector, obtained by ag-

gregating the embedding vectors of individual ACFG nodes.
The similarity score for two functions is given by the cosine
similarity of their ACFG embedding vectors.

1) Greedy Attack
Each ACFG node contributes a vector of 8 manually selected
features. Five of these features depend on the characteristics
of the instructions in the node, while the others on the graph
topology. The model distinguishes instructions from an ISA
only for how they contribute to these 5 features. This enables
a gray-box variant of our Greedy attack: we measure the
robustness of Gemini using a set of candidates CAND of
only five instructions, carefully selected for covering the five
features. Later in the paper, we use this variant as the baseline
approach for a comparison with Spatial Greedy.

2) GCAM Attack
As described in the previous section, some of the components
of a node feature vector v depend on the instructions inside the
corresponding basic block. As Gemini maps all possible ISA
instructions into 5 features, we can associate each instruction
with a deterministic modification of v represented as a vector
u. We select five categories of instructions and for each cate-
gory cj we compute the modification uj that will be applied to
the feature vector v. We selected the categories so as to cover

10 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

the aforementioned features.
When we introduce in the block an instruction belonging

to category cj, we add its corresponding uj modification to
the feature vector v. Therefore, inserting instructions inside
the block modifies the feature vector v by adding to it a
linear combination vector

∑
j njuj, where nj is the number

of instructions of category cj added. Our perturbation δ acts
on the feature vector of the function only in the components
corresponding to the added dead branches, by modifying the
coefficients of the linear combination above.

Since negative coefficients are meaningless, we avoid
them by adding to the optimization problem appropriate
constraints. Moreover, we solve the optimization problem
without forcing the components of δ to be integers, as this
would create an integer programming problem. Therefore,
at the end of the iterative optimization process, we get our
problem-space perturbation δp by rounding to the closest
positive integer value each component of δ. It is immediate
to obtain from δp the problem-space perturbation to insert
in our binary function f1. Indeed, in each dead block, we
must add as many instructions belonging to a category as
the corresponding coefficient in δp. We report a simplified
example of the GCAM procedure against Gemini in Figure 7.

B. GMN
Graph Matching Network (GMN) [22] computes the sim-
ilarity between two graph structures. When functions are
represented through their CFGs, GMN offers state-of-the-art
performance for the binary similarity problem [22], [23].

Differently from solutions based on standard GNNs (e.g.,
Gemini), which compare embeddings built separately for
each graph, GMN computes the distance between two graphs
as it attempts to match them. In particular, while in a standard
GNN the embedding vector for a node captures properties of
its neighborhood only, GMN also accounts for the similarity
with nodes from the other graph.

1) Greedy Attack
Similarly to the case of Gemini, each node of the graph
consists of a vector of manually-engineered features. In par-
ticular, each node is a bag of 200 elements, each of which
represents a class of assembly instructions, grouped accord-
ing to their mnemonics. The authors do not specify why they
only consider these mnemonics among all the available ones
in the x86-64 ISA. Analogously to Gemini, when testing
the robustness of this model against the Greedy approach we
devise a gray-box variant by considering a set of candidates
CAND of 200 instructions, each of which belonging to one and
only one of the considered classes.

2) GCAM Attack
Our white-box attack operates analogously to what we pre-
sented in Section VIII-A2 and illustrated in Figure 7. Sim-
ilarly to the Gemini case, each dead branch adds a node to
the CFG while the feature mapping function transforms each
CFG node into a feature vector. The feature vector is a bag

of the instructions contained in the node, where assembly
instructions are divided into one of 200 categories using the
mnemonics.

C. SAFE
SAFE [4] is an embedding-based similarity model. It repre-
sents functions in the problem space as sequences of assembly
instructions. It first converts assembly instructions into con-
tinuous vectors using an instruction embedding model based
on the word2vec [20] word embedding technique. Then, it
supplies such vectors to a bidirectional self-attentive recurrent
neural network (RNN), obtaining an embedding vector for the
function. The similarity between two functions is the cosine
similarity of their embedding vectors.

1) Greedy Attack
The Greedy attack against SAFE follows the black-box ap-
proach described in Section V-A. Since SAFE does not use
manually engineered features, we cannot select a restricted
set of instructions that generates all vectors of the feature
space for a gray-box variant. We test its resilience against
the Greedy approach considering a carefully designed list
of candidates CAND composed of random and hand-picked
instructions, meaning that the baseline is a black-box attack.

2) GCAM Attack
In the feature space, we represent a binary function as a
sequence of instruction embeddings belonging to a prede-
fined metric space. The perturbation δ is a sequence of real-
valued vectors initialized with embeddings of real random
instructions; each dead block contains four of such vectors. In
the optimization process, we modify each embedding ij ∈ δ
by a small quantity given by the negative gradient of the
loss function L. In other words, every time we optimize the
objective function, we alter each ij ∈ δ by moving it in the
negative direction identified through the gradient.
Since during optimization we modify instruction embed-

dings in terms of their single components, we have no guar-
antee that the obtained vectors are embeddings of real instruc-
tions. For this reason, after the optimization process, we com-
pute the problem-space perturbation δp by approximating, at
each iteration, the vectors in δ to the closest embeddings in
the space of real instruction embeddings. At this point, it is
straightforward to obtain from the approximated perturbation
δp the instructions that should be added to the binary function
f1; indeed, each vector in δp corresponds to the embedding of
a real instruction that will be inserted into the function f1. We
report a simplified example of the GCAM procedure against
SAFE in Figure 8.

IX. DATASETS AND IMPLEMENTATION
In this section, we discuss the evaluation datasets and the
corpus for training the embedding model of Spatial Greedy.

VOLUME 11, 2023 11

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

(a) (b)

(c)

(d)

(e)

<latexit sha1_base64="L4oDn26ge845zgAob0Gc2OX76BA=">AAACXHicbZDPaxNBFMcna6s1sTYqCOJlaBF6CrultF7EghePFUxbyCzh7exLMnRmdpl5WwjL/k3+J94VFPo/9Ko4u80htn2nL5/3+5uVWnmK4x+96NHG5uMnW0/7g2fbz3eGL16e+aJyEsey0IW7yMCjVhbHpEjjRekQTKbxPLv81ObPr9B5VdivtCwxNTC3aqYkUEDT4UJonNFEZDhXtgbnYNnUsuFqGvMPXBighTO1Ka4aIQJM1iDkecM7erBGJWjdCLT5ahgXTs0XlE6He/Eo7oLfF8lK7J18fPPt+mc9OJ0Of4m8kJVBS1KD95MkLikNU0lJjU1fVB5LkJcwx0mQFgz6tO4cafi7ygMVvETHleYdxPWOGoz3S5OFyvZufzfXwodyk4pm79Na2bIitLJdREpjt8hLp4LVyHPlkAjay5EryyU4IEKnOEgZYBW87wc/krvf3xdnB6PkaHT4JRhzyG5ji71lu2yfJeyYnbDP7JSNmWTf2Q37w/72fkcb0SDavi2NequeV+y/iF7/AyXsu5k=</latexit>2
4

i0 = mov
i1 = add
i2 = call

3
5

<latexit sha1_base64="axx+dCvXqthAhzQ5xLTaVb0mVnw=">AAACWnicbVBNT9tAEN24XyHpRyhcUC+rRpV6imwKLbdG6oUjSIREiq1ovJkkq6zXZndcKbLym/pH+gdatQf+Atf2wNoYCQhzmTdv5s3svjhT0pLv/2p4T54+e/6iudVqv3z1+k1n++25TXMjcCBSlZpRDBaV1DggSQpHmUFIYoXDePmt7A+/o7Ey1We0yjBKYK7lTAogR006s1DhjMZhjHOpCzAGVutCrHnAw4scpny/zp94GN4tquyX5GFd3CpcjXpar+KhkfMFRZNO1+/5VfBNENSg2/+69+Pyd9E+mXT+htNU5AlqEgqsHQd+RpHbSlIoXLfC3GIGYglzHDuoIUEbFZUfa/4ht0Apz9BwqXhF4l1FAYm1qyR2kwnQwj7sleRjvXFOs6OokDrLCbUoD5FUWB2ywkhnNPKpNEgE5cuRS80FGCBCIzkI4cjcOd9yfgQPf78Jzvd7wefewakz5oDdRJO9Y+/ZRxawL6zPjtkJGzDBfrIr9o/9b/zxPG/La9+Meo1as8Puhbd7DR/MtyU=</latexit>2
4

1 2 3
2 3 0
5 1 5

3
5

<latexit sha1_base64="Y8Pk5EKho9ovVhSDyCb4TftYqDI=">AAACwXicbVHNbtQwEHbCX1n+FjhysaiQOKAo6S7b9lapQnAsEtsWbaLV2JndWnWcYE+QVlHeAIkn4wEQQrwKThqk0nYOnplvvvm1qLRyFMc/g/DW7Tt3723dHz14+Ojxk/HTZ8eurK3EuSx1aU8FONTK4JwUaTytLEIhNJ6I88MufvIVrVOl+USbCrMC1katlATy0HL8I81x5XP7So0EW/pKIHSNbWPXom3iaPaGx9HupHv39ttRqnFFi1TgWpkGrIVN28iWJzz9UkPOdwY94Wl62el13IHpDb1mA2F/0NOBJDTI87bLejtE/vXxPpp8GICnVq3PKFuOt+Mo7oVfN5LB2D549+3Xn+/v46Pl+Heal7Iu0JDU4NwiiSvKfFVSUqNftnZY+RFgjQtvGijQZU0/W8tf1Q6o5BVarjTvQbyc0UDh3KYQnlkAnbmrsQ68KbaoabWXNcpUNaGRXSNSGvtGTlrl/xN5riwSQTc5cmW4PycQoVUcpPRg7T945O+RXN3+unG8EyWzaPrRH2bKLmSLvWAv2WuWsF12wD6wIzZnMpgEnwMRyPAwVGEV2gtqGAw5z9l/EjZ/Af6S2z0=</latexit>2
664

1 2 3
2 3 0
6 9 4
5 1 5

3
775 <latexit sha1_base64="LxQmKD/uXU6u8/4ASY2XoosjfsE=">AAACAHicbVC7TgJBFJ3FF+ILtbSZSEysyK4haieJjSUm8kgAyd3hqhNmH5m5S0I2NH6F2mllZyz1Tyz8F3cXCgVPdXLOvXPuHDdU0pBtf1m5hcWl5ZX8amFtfWNzq7i90zBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMdnKd+c4jayMC/olGIXQ9ufXkjBVAiXXeyF2KN/TH0h71iyS7bGfg8caakdPbxmOKp1it+d/qBiDz0SSgwpu3YIXVj0CSFwnGhExkMQQzgFtsJ9cFD042zzDE/iAxQwEPUXCqeifh7IwbPmJHnJpMe0J2Z9VLxP68d0c1pN5Z+GBH6Ig0iqTALMkLLpA7kfamRCNLLkUufC9BAhFpyECIRo6SfQtKHM/v7edI4KjvH5cqlXapW2AR5tsf22SFz2AmrsgtWY3UmmGYP7Jm9WPfWq/VmvU9Gc9Z0Z5f9gfX5A1p3m/o=</latexit>

adv

<latexit sha1_base64="+juxYJr5pduF2cAzEkeRZ+JsWAM=">AAACb3icbVHdStxAFJ7Ettrtj9Fe9EIoQ6WgN0ui60/vhCLtpYWuCjvLcjJ7dh2cTOLMibCEfQOhz1dKKT6Cb+AkRrDac3O+853f+SYttHIUx7+CcOHZ8xeLSy87r16/ebscraweu7y0Evsy17k9TcGhVgb7pEjjaWERslTjSXr+pc6fXKJ1Kjc/aFbgMIOpURMlgTw1iiqhcUIbIsWpMhVYC7N5Jec84eKihDHfav02F+Jh0Pi4Jnfa4L5jpyZ32+Bz63tcoBm387mwanpGm6NoPe7GjfGnIGnB+sHh1e+/P7/GR6PojxjnsszQkNTg3CCJCxr6qaSkxnlHlA4LkOcwxYGHBjJ0w6oRac4/lQ4o5wVarjRvSHzYUUHm3CxLfWUGdOYe52ryf7lBSZP9YaVMURIaWS8ipbFZ5KRVXn3kY2WRCOrLkSvDJVggQqs4SOnJ0n9Hx+uRPH79U3C81U12u73vXpgeu7MltsY+sg2WsD12wL6xI9Znkl0Hi0EUrAQ34fvwQ8jvSsOg7XnH/rFw8xbswbsF</latexit>0
BB@

1 2 3
2 3 0
5 1 5
6 9 4

1
CCA

<latexit sha1_base64="pC9sdCfw+x7BuBIlQurNU5f1+QE=">AAAB9HicbVC7SgNBFJ2NrxhfUUubwSBYhV0RtTNgYxnFPCBZwuzkJg6ZmV1m7gZCyB/YKih2Ymvvp1j4L+5uUmjiqQ7n3Ms99wSRFBZd98vJLS2vrK7l1wsbm1vbO8XdvboNY8OhxkMZmmbALEihoYYCJTQjA0wFEhrB4Cr1G0MwVoT6DkcR+Ir1tegJzjCRbkF1iiW37Gagi8SbkdLl53OKl2qn+N3uhjxWoJFLZm3LcyP0x8yg4BImhXZsIWJ8wPrQSqhmCqw/zpJO6FFsGYY0AkOFpJkIvzfGTFk7UkEyqRje23kvFf/zWjH2Lvyx0FGMoHl6CIWE7JDlRiQVAO0KA4gsTQ5UaMqZYYhgBGWcJ2KcdFJI+vDmv18k9ZOyd1Y+vfFKlVMyRZ4ckENyTDxyTirkmlRJjXDSIw/kkTw5Q+fVeXPep6M5Z7azT/7A+fgBifqWbA==</latexit>em
<latexit sha1_base64="BKW4HW+rI7Glt1B5C7nZjWYbReA=">AAACDHicbVC7SgNBFJ31GeNr1UawGQyCVdiVoHYGbCwjmAckS5id3MQhsw9m7gbCsn6Cvda2WtmI2PoPFv6Lu5sUmniqwzn3zrlz3FAKjZb1ZSwsLi2vrBbWiusbm1vb5s5uQweR4lDngQxUy2UapPChjgIltEIFzHMlNN3hZeY3R6C0CPwbHIfgeGzgi77gDFOpa+538jdiV0aQdDyGt24/9oJR0jVLVtnKQeeJPSWli7eHDI+1rvnd6QU88sBHLpnWbdsK0YmZQsElJMVOpCFkfMgG0E6pzzzQTpynJ/Qo0gwDGoKiQtJchN8bMfO0HntuOpndqGe9TPzPa0fYP3di4YcRgs+zIBQS8iDNlUirAdoTChBZdjlQ4VPOFEMEJSjjPBWjtKti2oc9+/t50jgp26flyrVVqlbIBAVyQA7JMbHJGamSK1IjdcLJHXkiz+TFuDdejXfjYzK6YEx39sgfGJ8/RLKg2Q==</latexit>mov
<latexit sha1_base64="kvPgN01cXHrd/L/z/jeCvAYEVlU=">AAACC3icbVC7TsNAEDyHd3gZKChoTkRIVJGNIqADiYYySCQgJVa0Pm/gxPmhuzVSZPkT+ABoaaGiAtHyERT8C7ahAMJUo5ndm73xEyUNOc67VZuYnJqemZ2rzy8sLi3bK6tdE6daYEfEKtbnPhhUMsIOSVJ4nmiE0Fd45l8dlf7ZNWoj4+iURgl6IVxEcigFUCEN7PV+9UamMcj7IdClP8wgCPKB3XCaTgU+Ttxv0jh4vi1x1x7YH/0gFmmIEQkFxvRcJyEvA01SKMzr/dRgAuIKLrBX0AhCNF5Whed8KzVAMU9Qc6l4JeLPjQxCY0ahX0yWN5q/Xin+5/VSGu57mYySlDASZRBJhVWQEVoWzSAPpEYiKC9HLiMuQAMRaslBiEJMi6rqRR/u39+Pk+5O091ttk6cxmGLfWGWbbBNts1ctscO2TFrsw4TLGf37IE9WjfWk/VivX6N1qzvnTX2C9bbJyuqoDk=</latexit>

add
<latexit sha1_base64="tbdLN7Yohc10mtu5hyrwZsDKu9Y=">AAACN3icbVDLSsNAFJ34rPXRqEs3gyIoSEmkPnYWRHBZwVahLWUyva1DJw9mbgQJ+SA/QfwIt7oQd6JL/8BJ2kVtvYtwOPecOTfHi6TQ6Dhv1szs3PzCYmGpuLyyulay1zcaOowVhzoPZahuPaZBigDqKFDCbaSA+Z6EG29wnu1v7kFpEQbX+BBB22f9QPQEZ2iojn3e6kLPePOXEuMDlSaq76WJW3YOqFM+Ocq+TlpsjUtaPsM7r5dwJmXasXeMIh86DdwR2KmWvs/2i88XtY793uqGPPYhQC6Z1k3XibCdMIWCSzBRsYaI8QHrQ9PAgPmg20men9LdWDMMaQSKCklzEsYd5kKtH3zPKLMj9eQuI//bNWPsnbYTEUQxQsCzIBQS8iDNlTAtAu0KBYgsuxyoCChniiGCEpRxbsjY1Fo0fbiTfz8NGodl97hcuTLFVMhwCmSLbJM94pITUiWXpEbqhJNH8kJeyZv1ZH1Yn9bXUDpjjTyb5M9YP7/Vhq7k</latexit>

call
<latexit sha1_base64="fM608ikU9wHwzbS1Fg6SAQe9Or8=">AAACRXicbVDLSiNBFK32GeMro8vZFCMDCtJ0q2hmZWAQZmlgokISwu3KTSysrm6qbg+Epr9rFn6A3+DC7YgLd+J2prrjwlHvojicc+6jTpQqaSkIbr2Z2bn5hcXaUn15ZXVtvfFp48wmmRHYEYlKzEUEFpXU2CFJCi9SgxBHCs+jq++lfv4LjZWJ/kmTFPsxjLUcSQHkqEGj3RviyPVWk3IBJnGTIFIZFrkZR0Ue+Ie7PPCP9su3+a2o9z6w9mKgy2iUgx4Wg8ZW4AdV8fcgfAFbrfWH45369cnpoHHXGyYii1GTUGBtNwxS6udgSAqFbmFmMQVxBWPsOqghRtvPqysK/jWzQAlP0XCpeEXi644cYmsnceSc5Y32rVaSH2ndjEbNfi51mhFqUS4iqbBaZIWRLlPkQ2mQCMrLkUvNXSZAhEZyEMKRmQu57vII3/7+PTjb88ND/6Dtgjlg06qxz+wL22YhO2It9oOdsg4T7De7Y3/YvXfjPXpP3vPUOuO99Gyy/8r7+w9P8rUf</latexit>

and

<latexit sha1_base64="mk5UCIZNq4dfl/cKD7ZFNWkcY5Y=">AAACw3icbVFNb9QwEHXCV1m+FjhysaiQOKAoabu03CqhCo5FYttKSbSaOLOptY4T7AnSKso/QOKncUYI8Vdw0qxUuszBnnkzb+aNndVKWgrDn55/6/adu/d27k8ePHz0+Mn06bMzWzVG4FxUqjIXGVhUUuOcJCm8qA1CmSk8z1bv+/z5VzRWVvozrWtMSyi0XEoB5KDF9EeS49Jxh04t1LXCwiDqrjVF1rVhMJu94WFwGPVn2E0ShUuKkwwLqVswBtZdKzoe8eRLAznfG+99niTXg+EOezDZmhQFRxt28G5TGkRjYaZArLqeORtzm1kuRp2PInhiZHFJ6WK663QOxredaHR2j0++/frz/UN4upj+TvJKNCVqEgqsjaOwptR1JSkUuoUbi7WTAAXGztVQok3bQVvHXzUWqOI1Gi4VH0C8zmihtHZdZq6yBLq0N3M9+L9c3NDyKG2lrhtCLfpBJBUOg6ww0v0o8lwaJIJeOXKpuQADRGgkByEc2Lgvnrj3iG5uv+2c7QXR2+Dgk3uYA3ZlO+wFe8les4gdsmP2kZ2yORPezIu93EP/xF/5xqerUt8bOc/ZP+Z3fwGS3NrC</latexit>2
664

1 2 3
2 3 0

1.8 2.9 0.1
5 1 5

3
775 <latexit sha1_base64="LxQmKD/uXU6u8/4ASY2XoosjfsE=">AAACAHicbVC7TgJBFJ3FF+ILtbSZSEysyK4haieJjSUm8kgAyd3hqhNmH5m5S0I2NH6F2mllZyz1Tyz8F3cXCgVPdXLOvXPuHDdU0pBtf1m5hcWl5ZX8amFtfWNzq7i90zBBpAXWRaAC3XLBoJI+1kmSwlaoETxXYdMdnKd+c4jayMC/olGIXQ9ufXkjBVAiXXeyF2KN/TH0h71iyS7bGfg8caakdPbxmOKp1it+d/qBiDz0SSgwpu3YIXVj0CSFwnGhExkMQQzgFtsJ9cFD042zzDE/iAxQwEPUXCqeifh7IwbPmJHnJpMe0J2Z9VLxP68d0c1pN5Z+GBH6Ig0iqTALMkLLpA7kfamRCNLLkUufC9BAhFpyECIRo6SfQtKHM/v7edI4KjvH5cqlXapW2AR5tsf22SFz2AmrsgtWY3UmmGYP7Jm9WPfWq/VmvU9Gc9Z0Z5f9gfX5A1p3m/o=</latexit>

adv
<latexit sha1_base64="E+fk6YzPHJ2O7Ma2EuS00+vcY70=">AAACDXicbVDLSgNBEJz1bXzFx0W8DAYhgoRdCeox4MWjgtFAEkLvpKODM7PLTG+ILMFP8Cu86smbePUbPPgvbtYcfNWpqOqmuyqMlXTk++/exOTU9Mzs3HxhYXFpeaW4unbhosQKrItIRbYRgkMlDdZJksJGbBF0qPAyvDke+Zd9tE5G5pxuY2xruDKyJwVQJnWKm1qaTjrgLWk46mG5Wx7scej2d3c7xZJf8XPwvyQYk1Jto5fjtFP8aHUjkWg0JBQ41wz8mNopWJJC4bDQShzGIG7gCpsZNaDRtdM8wpDvJA4o4jFaLhXPRfy+kYJ27laH2aQGuna/vZH4n9dMqHfUTqWJE0IjRodIKswPOWFl1g3yrrRIBKPPkWdFCLBAhFZyECITk6ysQtZH8Dv9X3KxXwkOKtWzoFSrsi/MsS22zcosYIesxk7YKaszwe7YA3tkT9699+y9eK9foxPeeGed/YD39gn4l503</latexit>

minx2em(d(x, adv))

<latexit sha1_base64="3wlWvOWrg0eoLD4z5BYXitEB0Tc=">AAACvXicbVHbbtQwEHVSLmW5LfDIi0WFxANakrZLeaNSheCxSGxbaRNWE2c2teo4xp6AVlH+oFK/i09ACPErOGmQSpd5sGfOXM5cMqOkoyj6EYQbN27eur15Z3T33v0HD8ePHh+5qrYCZ6JSlT3JwKGSGmckSeGJsQhlpvA4Ozvo/Mdf0TpZ6U+0MpiWUGi5lALIQ4vx9yTHpc/tKzVgjMLCIuq2sUXWNtFkOn3Jo8le3L1RO0oULmmeZFhI3YC1sGob0fKYJ19qyPn28O/wJLlq9H/Ugcka01rYEJIpEGdtlzMdPH9ZvI06H+h5YmVxSulivOU77IWvK/GgbO2/O//5++J9dLgY/0ryStQlahIKnJvHkaHUVyUpFPpRa4fGtwAFzr2qoUSXNn1vLX9eO6CKG7RcKt6DeDWjgdK5VZn5yBLo1F33deD/fPOalm/SRmpTE2rREZFU2BM5YaW/JfJcWiSCrnPkUnMBFojQSg5CeLD2xx35fcTXp19XjrYn8evJ7ke/mF12KZvsKXvGXrCY7bF99oEdshkTwatgFnwOFuHbEEMV6svQMBhynrB/JPz2B3DM2Vw=</latexit>2
664

1 2 3
2 3 0
2 3 0
5 1 5

3
775

<latexit sha1_base64="DAF94QR3Us0U0O+LeSVpi+as3NY=">AAACjnicbZFNa9wwEIZl9yvdfjntsRfR0NLT1g4h7SUkUEpzTKGbBFbGjOXZjYgsG2m8sBj/g0Du+WehlP6Vys4etpvOaXjmHc2rmbzWylEc3wbhg4ePHj/Zejp69vzFy1fR9utTVzVW4kRWurLnOTjUyuCEFGk8ry1CmWs8yy+/9vWzBVqnKvOTljWmJcyNmikJ5FEW3QiNM5qKHOfKtGAtLLtWdlxlMT/gogS6sGVbVotOCA+TNQhF0XFPxeCitVh0KvN00W2IVoJcg7wcOlS2uyaRoHUn0BSr8VxYNb+gNIt24nE8BL+fJKtk5+jb1a8/19/jkyz6LYpKNiUakhqcmyZxTal/lZTU2I1E47D2HmCOU58aKNGl7WCu4+8bB1TxGi1Xmg8Q1ztaKJ1blrlX9r7dZq2H/6tNG5p9SVtl6obQyH4QKY3DICet8sdBXiiLRNA7R64Ml2CBCK3iIKWHjb/WyO8j2fz9/eR0d5zsj/d++MXssbvYYm/ZO/aRJewzO2LH7IRNmAxY8CH4FMRhFO6HB+HhnTQMVj1v2D8RHv8FPI/Mbw==</latexit>2
664

i0 = mov
i1 = add

iadv = add
i2 = call

3
775

FIGURE 8. GCAM attack against SAFE. Once obtained the initial linear
disassembly of the function f1, we map each instruction to its embedding
(a) using the embedding matrix em, obtaining the feature space
representation of f1. Then, we initialize the perturbation by inserting into
the feature space representation of f1 the embedding vector adv
associated to a real instruction (b) uniformly sampled from the
embeddings in em. We then iteratively modify adv by applying the
gradient descent (c). Finally, we approximate the obtained adv vector to
the closest embedding in em (d) and we insert its corresponding
instruction into f1 (e).

A. ATTACK DATASET
We test our approaches by considering pairs of binary func-
tions randomly extracted from 6 open-source projects writ-
ten in C language: binutils, curl, gsl, libconfig, libhttp, and
openssl. We compile the programs for an x86-64 architec-
ture using the gcc 9.2.1 compiler with -O0 optimization
level on Ubuntu 20.04. We filter out all functions with less
than six instructions. As a result, we obtain a dataset of code
representative of real-world software, with source programs
used in the evaluation or training of binary similarity solutions
(e.g., [4], [8], [9], [23]), and that could be potential targets for
the exemplary scenarios outlined in Section I.

To evaluate the robustness of the three targetmodels against
our proposed approaches, we used a dataset made of 500
pairs of binary functions sampled from the general dataset.
The dataset, which we call Targ, consists of pairs of random
functions. In its construction, a function cannot be considered
more than once as a source function but may appear multiple
times as a target. The functions within a pair differ at most by
1345 instructions, and on average by 135.27 instructions.

In the untargeted scenario, source and target functions
have to coincide. For these attacks, we use the dataset Untarg
composed by the 500 functions used as source in the Targ
dataset. Being pairs made of identical functions, they are
trivially balanced for instructions and CFG nodes.

B. DATASET USED FOR SPATIAL GREEDY
As described in Section V-B1, in Spatial Greedy we use an
instruction embedding model to induce a metric space over
assembly instructions. We opt for word2vec [20]; the reader
may wonder whether this choice may unfairly favor Spatial
Greedy when attacking SAFE, which uses word2vec in its

initial instruction embedding stage. We conducted additional
experiments for SAFE using two other models, GloVe [40]
and fastText [41]. The three models perform almost identi-
cally in targeted attacks, while in untargeted ones fastText
occasionally outperforms the others by a small margin. For
the sake of generality, in the paper evaluation we will report
and discuss results for word2vec only. For each of the consid-
eredmodels, we use the following parameters during training:
embedding size 100, window size 8, word frequency 8 and
learning rate 0.05. We train these models using assembly
instructions as tokens. We use as training set a corpus of
23,181,478 assembly instructions, extracted from 291,688
binary functions collected by compiling various system li-
braries with the same setup of the previous section.
One aspect worth emphasizing is that Spatial Greedy uses

embeddings unrelated to the binary similarity model being
targeted. We trained the Spatial Greedy embedding model
using distinct dataset and parameters compared to SAFE,
whereas neither GMN nor Gemini incorporate a layer that
converts a single instruction into a feature vector. Spatial
Greedy relies on embeddings to enhance the instruction in-
sertion process during the attack by clustering the instruction
space, independently of the underlying model being attacked.

C. IMPLEMENTATION DETAILS
We implement our attacks in Python in about 3100 LOC. In
the hope to foster research in the area, we make the code
available upon request to fellow researchers.
An aspect that is worth mentioning for the black-box at-

tacks involves the application of the perturbation ⟨bl,in⟩
chosen at each iteration. Modifying the binary representation
of the function every time incurs costs (recompilation in
our case; binary rewriting in alternative implementations)
that we may avoid through a simulation. In particular, we
directly modify the data structures that the target models use
for feature mapping when parsing the binary, simulating the
presence of newly inserted instructions. The authors imple-
mented these models in tensorflow or pytorch, which allows
us to keep our modifications rather limited. In preliminary
experiments, we have verified that the similarity values from
our simulation are comparable with those we would have
obtained by recompiling the modified functions output by
our attacks. Finally, to avoid recalculating the adversarial
examples for various thresholds, we selected two fixed values
for our optimizer to satisfy: τt = 0.96 for the targeted case
and τu = 0.50 for the untargeted one. For the evaluation in
Section X, we consider the adversarial examples generated
by inserting the perturbations obtained at the end of the simu-
lation process into the corresponding functions and compiling
them into object files.
Finally, we want to highlight that each black-box iteration

could be considered as a single query to the target model. This
is possible because we are querying the model in batch mode,
giving it in input a set of functions that are processed together.
This implies that when setting a maximum number of itera-
tions, we are implicitly limiting the number of queries that

12 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

the attacker can perform, following the approaches adopted
in [42], [43].

X. EVALUATION
In this section, we evaluate our attacks and investigate the
following research questions:

RQ1: Are the three target models more robust against
targeted or untargeted attacks?
RQ2: Are the three target models more robust against
black-box or white-box approaches?
RQ3:What is the impact of feature extracting method-
ologies and model architectures on the performance
and the behaviour of our attacks?

Performance metrics
Our main evaluation metric is the Attack success rate (A-
rate), that is the percentage of adversarial samples that suc-
cessfullymislead the target model.We complement our inves-
tigation by collecting a set of support metrics to gain qualita-
tive and quantitative insights into the attacking process:

• Modification size (M-size): number of inserted inline
assembly instructions;

• Average Similarity (A-sim): obtained final similarity
values;

• Normalized Increment (N-inc): similarity increments
normalized with respect to the initial value; only used
for targeted attacks;

• Normalized Decrement (N-dec): similarity decrements
normalized with respect to the initial value; only used for
untargeted attacks.

Support metrics are computed over the set of samples that
successfully mislead the model (according to the success
conditions outlined in Section X-A).

As an example, let us consider a targeted attack against
three pairs of functions with initial similarities 0.40, 0.50, and
0.60. After the attack we reach final similarities that are 0.75,
0.88, and 0.94, by inserting respectively 4, 7, and 12 inline
assembly instructions. We deem an attack as successful if the
final similarity is above τt = 0.80 (the reason will be clear
in the next section). In this example, we have an A-rate of
66.66%, a M-size of 9.5, an A-sim of 0.91, and a N-inc of
0.81.

The N-inc is the average of the formula below over the
samples that successfully mislead the model:

final similarity− initial similarity
1− initial similarity

(2)

The denominator for the fraction above is the maximum
possible increment for the analyzed pair: we use it to nor-
malize the obtained increment. Intuitively, the value of this
metric is related with the initial similarities of the successfully
attacked pair. Consider a targeted attack where a pair exhibits
a final similarity of 0.80. When the normalized increment is
0.7, their initial similarity is 0.33 (from Equation 2); when

the normalized increment is 0.3, we have a much higher 0.7
initial similarity.
The comparison between A-sim and the success threshold

gives us insights on the ability of the attack to reach high
similarity values. In the aforementioned example, the A-sim
value of 0.91 shows that when the attack is able to exceed
the success threshold, it has actually an easy time to bring the
similarity around the value of 0.91.

Evaluation outline
We test our black-box and white-bock attacks against each
target model in both the targeted and the untargeted scenario.
As discussed in Section IX-A, we use dataset Targ for the
former and dataset Untarg for the latter.

A. SETUP
In this section, we describe the attack parameters selected for
our experimental evaluation.

Successful Attacks
An attack is successful depending on the similarity value
between the adversarial example and the target function. For
a targeted attack, the similarity score has to be increased
during the attack until it trespasses a success threshold τt. For
an untargeted attack, this score, which is initially 1, has to
decrease until it is below a success threshold τu. Operatively,
the values of such thresholds are determined by the way
the similarity score is used in practice. In our experimental
evaluation, we choose the thresholds as follows. We compute
the similarity scores that our attacked systems give over a set
of similar pairs and over a set of dissimilar pairs. For the first
set, the average score is 0.79 with a standard deviation of
0.15. For the second set, these values are respectively 0.37
and 0.17. We thus opted for a success threshold τu = 0.5 for
untargeted attacks and τt = 0.8 for targeted ones. Both τu and
τt are within one standard deviation distant from the average
similarity value measured for the relevant set for the attack.
For the charts, we plot τu ∈ [0.46, 0.62] and τt ∈ [0.74, 0.88].
To fully understand the performance of the attacks, we also

measure the amount of function pairs in a dataset already
meeting a given threshold. For the targeted scenario, we plot
it as a line labeledC0. As our readers can see (Figure 9), their
contribution is marginal: hence, we do not discuss them in the
remainder of the evaluation. For the untargeted scenario, no
such pair can exist by construction.

Black-box Attacks
To evaluate the effectiveness of Spatial Greedy against the
black-box baseline Greedy, we select a maximum perturba-
tion size δ̄ (namely, the number of inserted instructions) and
a number of dead branches B in four settings: C1 (δ̄ = 15,
B = 5), C2 (δ̄ = 30, B = 10), C3 (δ̄ = 45, B = 15), and C4
(δ̄ = 60, B = 20).
We set ε = 0.1 in all greedy attacks. For Spatial Greedy

and black-box Greedy, we test two sizes for the set of can-
didates: 110 and 400. For Greedy, we pick 110 instructions

VOLUME 11, 2023 13

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

TABLE 2. Evaluation metrics with τt = 0.80 relative to the black-box attacks against the three target models in the targeted scenario. Spatial Greedy (SG)
is evaluated using parameters ε = 0.1 and r = 0.75. Greedy (G) is evaluated using ε = 0.1. G* is the gray-box version of Greedy: when such a version is
available (Section VIII), we show it instead of G. When examining G against SAFE, a set of candidates of size 400 is considered.

Target Attack
A-rate (%) (τt = 0.80) M-size (τt = 0.80) A-sim (τt = 0.80) N-inc (τt = 0.80)

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

G* 15.36 21.96 24.55 27.94 12.82 27.47 40.28 53.21 0.84 0.85 0.86 0.86 0.18 0.25 0.26 0.26
Gemini

SG 15.77 22.55 26.55 27.54 13.36 27.65 40.34 51.85 0.84 0.85 0.86 0.86 0.18 0.24 0.26 0.27

G* 26.40 43.31 51.29 59.08 11.48 22.02 32.19 41.89 0.92 0.92 0.92 0.93 0.74 0.76 0.77 0.78
GMN

SG 31.13 45.77 54.71 59.68 5.62 22.23 32.21 40.99 0.92 0.92 0.92 0.93 0.75 0.77 0.78 0.79

G 34.33 48.70 54.49 56.88 13.44 24.66 32.75 38.75 0.88 0.91 0.91 0.92 0.46 0.52 0.53 0.53

Ta
rg

SAFE
SG 37.13 51.90 58.08 60.68 13.54 24.63 32.76 40.31 0.89 0.92 0.92 0.92 0.47 0.52 0.54 0.55

manually and then randomly add others for a total of 400;
for Spatial Greedy, we recall that the selection is dynamic
(Section V-B2). The larger size brought consistently better
results in both attacks, hence we present results only for
it. Finally, for Spatial Greedy, we use c = 10 and r ∈
{0.25, 0.50, 0.75}, with r = 0.75 being the most effective
choice in our tests (thus, the only one presented next). For
the gray-box Greedy embodiments for Gemini and GMN, we
refer to Section VIII-A1 and VIII-B1, respectively.

White-box Attack
We evaluate GCAM considering four different values for the
number B of dead branches inserted: C1 (B = 5), C2 (B =
10), C3 (B = 15), and C4 (B = 20). For each model, we use
the number of iterations that brings the attack to convergence.

B. COMPLETE ATTACK RESULTS
This section provides complete results for our black-box and
white-box attacks on the three target models. For brevity,
we focus only on Spatial Greedy when discussing black-box
targeted and untargeted attacks, leaving out the results for the
baseline Greedy. The two will see a detailed comparison later,
with Spatial Greedy emerging as generally superior.

1) Black-box Targeted Attack
Considering an attacker with black-box knowledge in a tar-
geted scenario, the three target models show a similar behav-
ior against Spatial Greedy.

The attack success rateA-rate is positively correlated with
the number B of dead branches and the maximum number δ̄
of instructions introduced in the adversarial example. Fixing
at τt = 0.80 the success threshold for the attack, we have
an A-rate that on Gemini goes from 15.77% (setting C1) up
to 27.54% (setting C4). The other target models follow this
behavior, as the A-rate for GMN goes from 31.13% up to
59.68%, and from 37.13% up to 60.68% for SAFE. This trend
holds for other success thresholds as visible in Figure 9. From
these results, it is evident that the higher the values of the two
parameters, the lower the robustness of the attacked models.
Table 2 presents a complete overview of the results.

The other metrics confirm the relationship between the
parameters B and δ̄ and the effectiveness of our attack. In

0%

20%

40%

60%

80%

100%

A-
ra

te

Gemini GMN SAFE

0.75 0.80 0.85
T

0%

20%

40%

60%

80%

100%
A-

ra
te

0.75 0.80 0.85
T

0.75 0.80 0.85
T

(a)

(b)

C0 C1 C2 C3 C4

FIGURE 9. (a) Black-box targeted attack with Spatial Greedy against the
three target models while varying the success threshold τt ∈ [0.74, 0.88],
and settings C0 to C4. We use a set of candidates of 400 instructions,
ε = 0.1, and r = 0.75.
(b) White-box targeted attack against the three target models while
varying the success threshold τt ∈ [0.74, 0.88] and settings C0 to C4. Left:
GCAM attack with 20k iterations against GEMINI. Center: GCAM attack
with 1k iterations against GMN. Right: GCAM attack with 1k iterations
against SAFE.

particular, when increasing the perturbation size, as high-
lighted by the modification size M-size metric, both A-sim
and the normalized incrementN-inc increase, suggesting that
incrementing the perturbation size is always beneficial.

2) Black-box Untargeted Attack
Considering an attacker with black-box knowledge in a un-
targeted scenario, all the three target models are vulnerable to
Spatial Greedy, with different robustness.
The observations highlighted in Section X-B1 also hold

in this scenario. Incrementing B and δ̄ is beneficial for the
attacker. As visible in Figure 10 and in Table 3, the attack
success rate A-rate for τu = 0.50 in setting C1 is 22.95% for
Gemini, 65.87% for GMN, and 56.49% for SAFE. Themetric
increases across settings, peaking at 53.89% for Gemini,
91.62% for GMN, and 90.62% for SAFE in setting C4.

Table 3 also reports the results for modification size metric
M-size. In this case, we can see the effectiveness of Spatial

14 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

TABLE 3. Evaluation metrics with τu = 0.50 relative to the black-box attacks against the three target models in the untargeted scenario. Spatial Greedy
(SG) is evaluated using parameters ε = 0.1 and r = 0.75. Greedy (G) is evaluated using ε = 0.1. Similarly to Table 2, G* is the gray-box version of Greedy
where applicable. When examining G against SAFE, a set of candidates of size 400 is considered.

Target Attack
A-rate (%) (τu = 0.50) M-size (τu = 0.50) A-sim (τu = 0.50) N-dec (τu = 0.50)

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

G* 23.60 37.40 47.0 50.60 2.73 5.24 9.16 11.78 0.47 0.48 0.48 0.48 0.53 0.52 0.52 0.52
Gemini

SG 22.95 40.32 48.10 53.89 3.32 5.80 9.09 11.35 0.48 0.48 0.48 0.48 0.52 0.52 0.52 0.52

G* 68.40 86.20 91.02 93.81 2.55 3.77 3.82 3.71 0.27 0.25 0.22 0.21 0.73 0.75 0.77 0.79
GMN

SG 65.87 83.23 88.13 91.62 2.75 3.21 4.12 4.14 0.27 0.24 0.24 0.23 0.73 0.76 0.76 0.77

G 44.71 74.65 82.83 88.22 6.59 8.28 8.77 9.04 0.40 0.42 0.42 0.42 0.40 0.44 0.45 0.45

U
nt

ar
g

SAFE
SG 56.49 80.83 87.42 90.62 6.67 7.74 7.77 7.64 0.39 0.41 0.42 0.42 0.60 0.59 0.58 0.59

0%

20%

40%

60%

80%

100%

A-
ra

te

Gemini GMN SAFE

0.50 0.55 0.60
U

0%

20%

40%

60%

80%

100%

A-
ra

te

0.50 0.55 0.60
U

0.50 0.55 0.60
U

(a)

(b)

C1 C2 C3 C4

FIGURE 10. (a) Black-box untargeted attack with Spatial Greedy against
the three target models while varying the success threshold τu
∈ [0.46, 0.62], and the settings C1, C2, C3, and C4. We use a set of
candidates of 400 instructions, ε = 0.1, and r = 0.75.
(b) White-box untargeted attack against the three target models while
varying the success threshold τu ∈ [0.46, 0.62], and the settings C1, C2,
C3, and C4. Left: GCAM attack with 40k iterations against GEMINI. Center:
GCAM attack with 1k iterations against GMN. Right: GCAM attack with 1k
iterations against SAFE.

Greedy as a small number of inserted instructions is needed
against each of the considered target models. Indeed, consid-
ering setting C4, which is the one that modifies the function
most, the M-size at τu = 0.50 is 11.35 for Gemini, 4.14 for
GMN, and 7.64 for SAFE.

3) White-box Targeted Attack
With an attacker with white-box knowledge in a targeted
scenario, the three target models show different behaviors.
Table 4 presents a complete overview of the results.

Both Gemini and SAFE show a higher robustness to our
GCAM attack if compared to GMN.

As visible in Figure 9, when attacking Gemini and SAFE,
there is a positive correlation between the number B of loca-
tions (i.e., dead branches) where to insert instructions and the
attack success rate A-rate. When considering setting C1, the
A-rate for τt = 0.80 is 24.35% for Gemini, and 11.57% for
SAFE; moving to C4, it increases up to 31.60% for Gemini,

and 21.76% for SAFE. On the contrary, GMN does not show
a monotonic A-rate increase for an increasing B value, as the
peak A-rate is 38.32% in setting C2.
We now discuss themodification sizeM-sizemetric: fixing

τt = 0.80 and considering the setting where A-rate peaks,
we measure anM-size value of 38.90 for SAFE (C4), 133.84
for Gemini (C4), and 350.50 for GMN (C2): SAFE is the
model that sees the insertion of fewer instructions. This is not
surprising: due to the feature-space representation of SAFE,
the embeddings we alter in the attack for it (Section VIII-C2)
refer to a number of instructions that is fixed.

4) White-box Untargeted Attack
Figure 10 and Table 5 report the results for our attacks with
white-box knowledge in the untargeted scenario.
Gemini looks more robust than the other models: for exam-

ple, fixing τu = 0.50, we measure the highest attack success
rate A-rate as 39.52% in the C4 setting. On the contrary, for
the same τu, the highest A-rate for SAFE is 88.42% (setting
C3) and 84.63% for GMN (setting C4).
The general trend of having a positive correlation of B and

the A-rate is still observable (with a sharp increase of the A-
rate from setting C1 to C2). TheM-size shows that SAFE is
the most fragile model in terms of instructions to add, as they
are much fewer than with the other two models.

5) Greedy vs. Spatial Greedy
We now compare the performance of Spatial Greedy against
the Greedy baseline, until now left out of our discussions for
brevity. Figure 11 shows the results for a targeted attack on
the Targ. Additional data points are available in Table 2.
We discuss Gemini and GMN first. We recall that we could

exploit their feature extraction process to reduce the size of
the set of candidates, devising a gray-box Greedy procedure.
Spatial Greedy is instead always black-box.
Considering the A-rate at τt = 0.80, Spatial Greedy

always outperform the gray-box baseline, except for setting
C4 on Gemini (although the two perform similarly: 27.94%
for Greedy and 27.56% for Spatial Greedy). Looking at the
other metrics, we can see that our black-box approach based
on instructions embeddings is almost on par or improves on
the results provided by the gray-box baseline.

VOLUME 11, 2023 15

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

TABLE 4. Evaluation metrics with τt = 0.80 for the white-box targeted attack against the three target models. The GCAM attack is executed up to 20k
iterations for Gemini and up to 1k for GMN and SAFE.

Target
A-rate (%) (τt = 0.80) M-size (τt = 0.80) A-sim (τt = 0.80) N-inc (τt = 0.80)

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Gemini 24.35 29.94 30.94 31.60 53.67 86.53 111.83 133.84 0.85 0.86 0.86 0.86 0.54 0.60 0.63 0.62

GMN 34.73 38.32 34.93 35.33 212.79 350.5 439.03 461.08 0.85 0.84 0.84 0.84 0.78 0.78 0.77 0.79

Ta
rg

SAFE 11.57 18.96 20.36 21.76 18.62 31.87 38.27 38.90 0.84 0.85 0.85 0.85 0.67 0.71 0.70 0.71

TABLE 5. Evaluation metrics with τu = 0.50 for the white-box untargeted attack against the three target models. The GCAM attack is executed up to 20k
iterations for Gemini and up to 1k for GMN and SAFE.

Target
A-rate (%) (τt = 0.50) M-size (τt = 0.50) A-sim (τt = 0.50) N-dec (τt = 0.50)

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Gemini 16.37 28.94 36.32 39.52 46.63 79.76 103.86 117.21 0.48 0.48 0.48 0.47 0.51 0.52 0.52 0.53

GMN 68.06 80.24 83.63 84.63 298.34 541.32 718.57 859.53 0.23 0.19 0.18 0.18 0.78 0.81 0.82 0.82

U
nt

ar
g

SAFE 68.46 83.43 88.42 87.42 17.52 30.01 36.0 38.49 0.39 0.38 0.39 0.40 0.56 0.58 0.58 0.58

20%

40%

60%

A-
ra

te

Gemini GMN SAFE

0.83

0.85

0.88

0.90

0.93

0.95

A-
sim

0.75 0.80 0.85
T

0.40

0.60

0.80

N-
in

c

0.75 0.80 0.85
T

0.75 0.80 0.85
T

Greedy Spatial Greedy

FIGURE 11. Greedy and Spatial Greedy targeted attacks against the three
models while varying the success threshold τt ∈ [0.74, 0.88], considering
the setting C4. For both, we consider ε = 0.1 and |CAND| = 400. For
Spatial Greedy, we also set r = 0.75.

Moving to SAFE, we recall that only a black-box Greedy
is feasible. Considering the A-rate, we can notice that in-
creasing both δ̄ and B produces a more noticeable difference
between the baseline technique and Spatial Greedy. In theC1
setting, the A-rate at τt = 0.80 is 34.33% for Greedy and
37.13% for Spatial Greedy; then, it increases up to 56.89%
for Greedy and 60.68% for Spatial Greedy when considering
the C4 scenario.

The other metrics confirm this behavior. Considering the

average similarity A-sim, regardless of the chosen δ̄ and B
from the setting, we observe that adversarial pairs generated
through Spatial Greedy present a final average similarity that
is higher than the one relative to the pairs generated using
the baseline solution. The effectiveness of Spatial Greedy is
further confirmed by the normalized increment N-incmetric;
at a comparison of the results, the impact of the candidates se-
lected using Spatial Greedy is more consistent if compared to
the one of the candidates selected using the baseline approach.
We omit a discussion of the untargeted case for brevity.
Comparing Spatial Greedywith Greedy, wemeasure on the

Targ dataset an average A-rate increase of 2.27 and a de-
creasedM-size by 0.46 instructions across all configurations
and models. When considering the Untarg, Spatial Greedy
sees an average A-rate increase of 1.75, whereas the average
M-size is smaller by 0.16 instructions. We report detailed
results in Table 6.

Restricted Set Experiments
Finally, we perform a further experiment between the black-
box version of Greedy and Spatial Greedy, considering a
candidates’ set of smaller size; in particular, we consider a
set of 50 instructions which, in the case of Greedy, is a subset
of the one considered for the previously detailed experiments.
Our hypothesis is that the smaller the size of the candidates’
set the higher the difference in terms of A-rate in favour of
Spatial Greedy. We highlight that we applied the black-box
version of Greedy also when targeting Gemini and GMN. In
the following, we refer to the results obtained in the targeted
case when considering the C4 scenario.
When targeting SAFE, there is a significant difference,

with an A-rate of 30.74% for Greedy and 49.70% for Spatial
Greedy. A similar trend is seen with Gemini, where Greedy
shows an A-rate of 9.58% compared to 25.55% for Spatial
Greedy, and with GMN, where Greedy’s A-rate is 37.13%

16 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

versus 49% for Spatial Greedy.

Takeaway: Spatial Greedy is typically superior, and
always at least comparable, to a Greedy attack even
when an efficient gray-box Greedy variant is possible.
The results suggest that our dynamic update of the set
of candidates, done at each iteration of the optimiza-
tion procedure, can lead to the identification of new
portions of the instruction space (and, consequently, a
new subset of the ISA) that can positively influence
the attack results. Finally, the smaller the size of the
candidates’ set the higher the effectiveness of Spatial
Greedy compared to Greedy.

C. RQ1: TARGETED VS. UNTARGETED ATTACKS
From the previous sections, the attentive reader may have
noticed that all our approaches are much more effective in
an untargeted scenario for all models and proposed metrics.

When looking at the A-rate for all thresholds of similari-
ties, the three target models are less robust against untargeted
attacks (rather than targeted ones) regardless of the adver-
sarial knowledge. For the best attack among black-box and
white-box configurations, in the targeted scenario, the peak
A-rate at τt = 0.80 is 27.54% for Gemini, 59.68% for GMN,
and 60.68% for SAFE. For the untargeted scenario, the peak
A-rate at τu = 0.50 is 53.89% for Gemini, 91.62% for GMN,
and 90.62% for SAFE.

The number of instructions M-size needed for generat-
ing valid adversarial examples further confirms the weak
resilience of the target models to untargeted attacks. When
considering the worst setting according to M-size (i.e., C4),
while we need only few instructions for untargeted attacks at
τu = 0.50 (i.e., 11.35 for Gemini, 4.14 for GMN, and 7.64
for SAFE), we need a significantly higher number of added
instructions for targeted attacks (i.e., 51.85 for Gemini, 40.99
for GMN, and 40.31 for SAFE) at τt = 0.80.

Takeaway: On all the attacked models, both targeted
and untargeted attacks are feasible, especially using
Spatial Greedy (see also RQ2). Their resilience against
untargeted attacks is significantly lower.

D. RQ2: BLACK-BOX VS. WHITE-BOX ATTACKS
An interesting finding from our tests is that the white-box
strategy does not always outperform the black-box one.

Figure 12 depicts a comparison in the targeted scenario
between Spatial Greedy and GCAM for the attack success
rate A-rate, average similarity A-sim, and normalized incre-
ment N-inc metrics. The figure shows how different values
of the success attack threshold τt can influence the considered
metrics. OnGMNand SAFE, Spatial Greedy ismore effective
than GCAM, resulting in significantly higher A-rate values,
while the two perform similarly on Gemini.

20%

40%

60%

A-
ra

te

Gemini GMN SAFE

0.83

0.85

0.88

0.90

0.93

0.95

A-
sim

0.75 0.80 0.85
T

0.40

0.60

0.80

N-
in

c

0.75 0.80 0.85
T

0.75 0.80 0.85
T

Black-box White-box

FIGURE 12. Black-box and white-box targeted attacks against the three
models while varying the success threshold τt ∈ [0.74, 0.88]. In the
black-box scenario, all the results refer to the Spatial Greedy approach
(ε = 0.1, r = 0.75, and |CAND| = 400). In the white-box scenario, the
results for Gemini are for a GCAM attack with 20k iterations while the
ones for SAFE and GMN are for a GCAM attack with 1k iterations. We
consider all approaches in their most effective parameter choice, being it
always setting C4 except for the GCAM attack against GMN, for which we
consider setting C2.

Interestingly, in contrast with the evaluation based on the
A-rate metric, both the A-sim and N-inc values highlight a
coherent behavior among the three target models. Generally,
adversarial examples generated using Spatial Greedy exhibit
a higher A-sim value than the white-box ones (considering
τt = 0.80, we have 0.86 vs. 0.86 for Gemini, 0.93 vs. 0.84
for GMN, and 0.92 vs. 0.85 for SAFE). Looking at N-inc,
we face a completely reversed situation; the metric is better
in the adversarial samples generated using GCAM (0.62 for
Gemini, 0.79 for GMN, and 0.71 for SAFE) compared to
those from Spatial Greedy (0.27 for Gemini, 0.79 for GMN,
and 0.55 for SAFE). These two observations lead us to the
hypothesis that the black-box attack is more effective against
pairs of binary functions that exhibit high initial similarity
values and can potentially reach a high final similarity. On
the other side, GCAM is particularly effective against pairs
that are very dissimilar at the beginning.
For the untargeted scenario, our results (Tables 3 and 5)

for theA-ratemetric considering τu = 0.50 show that Spatial
Greedy has a slight advantage on GCAM. For Spatial Greedy,
we have best-setting values of 53.89% forGemini, 91.62% for
GMN, and 90.62% for SAFE; for GCAM, we have 39.52%
for Gemini, 84.63% for GMN, and 88.42% for SAFE.
In our experiments, GCAM performed worse than the

black-box strategy, which may look puzzling since theo-
retically a white-box attack should be more potent than a

VOLUME 11, 2023 17

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

TABLE 6. Difference between SG and G for the A-rate and M-size in the four settings C1-C4, averaged on the three models. Where applicable, we consider
the gray-box version of Greedy.

C1 C2 C3 C4

A-rate M-size A-rate M-size A-rate M-size A-rate M-size

Targ 2.65 -1.74 2.08 0.12 3 0.03 1.33 -0.23

Untarg 2.87 0.29 2.04 -0.18 0.93 -0.26 1.17 -0.47

black-box one. We believe this behavior is due to the inverse
feature mapping problem. Hence, we conducted a GCAM
attack exclusively in the feature space by eliminating all
constraints needed to identify a valid potential sample in
the problem space (i.e., non-negativity of coefficients for
Gemini and GMN, rounding to genuine instruction embed-
dings for SAFE). As a result, GCAM achieved an A-rate be-
tween 92.90% and 99.81% in targeted scenarios and between
97.01% and 100% in untargeted ones.

Takeaway: In our tests, the Spatial Greedy black-box
attack is on par or beats the white-box GCAM attack
based on a rounding inverse strategy. Further investi-
gation is needed to confirm if this result will hold for
more refined inverse feature mapping techniques and
when attacking other models.

E. RQ3: IMPACT OF FEATURES EXTRACTION AND
ARCHITECTURES ON ATTACKS
As detailed in Section VIII, we can distinguish the target
models according to three aspects (NN architecture, input
representation, and feature mapping process). Here, we are
interested in investigatingwhether these aspects can influence
the performance of our attacks or not.

In the targeted black-box scenario (Figure 9 and Table 2),
SAFE and GMN are the weakest among the three considered
models, as the peak attack success rate A-rate at τt = 0.80 is
60.68% for SAFE, 59.68% for GMN, and 27.54% for Gemini
(C4 setting). These results highlight that our attack is sensible
to some aspects of the target model, in particular to the feature
mapping process and the DNN architecture employed by
the considered models. To assess this insight, we conduct
different analyses to check whether our Spatial Greedy attack
is exploiting some hidden aspects of the considered models
to guide the update of the candidates’ set. First, we check
whether or not there exists a correlation between the num-
ber of initial instructions composing the function f1 and the
obtained final similarity value. This analysis is particularly
interesting for SAFE, as this model computes the similarity
between two functions by only considering their first 150
instructions; the results of this study are reported in Figure 13.
From the plots it is visible that there exists a negative corre-
lation between the final similarity and the initial number of
instructions composing the function we are modifying, also
confirmed by the Pearson’s r correlation coefficient high-
lighting that this negative correlation is almost moderate for

SAFE (with r = −0.38) while it is weak for both Gemini and
GMN (with r = −0.25 and r = −0.22 respectively). These
results confirm that when Spatial Greedy modifies a function
that is initially small (particularly composed by less than 150
instructions), then our adversarial example and the function
f2 are more likely to have a final similarity value near 1 when
targeting SAFE rather then the two other models.

Then, since both Gemini and GMN implements a feature
mapping function which deeply looks at the particular as-
sembly instructions composing the single blocks, we conduct
a further analysis to assess whether or not the instructions
inserted by Spatial Greedy trigger the features required by
the two considered models. In particular, for each inserted
instruction, we check whether or not it is mapped over the
features considered by the two models and, for each adver-
sarial example, we calculate the percentage of instructions
satisfying this condition. In the targeted black-box scenario
using Spatial Greedy, we find that on average, 90.83% of
the inserted instructions for Gemini and 100% for GMN are
mapped to the considered features.

To verify how the particular architecture implemented by
the model affects the performance of Spatial Greedy, we
checked how the instructions inserted by our procedure are
distributed across the various dead branches. Our hypothesis
is that when targeting GNN-based models (as Gemini and
GMN), our attack should span the inserted instructions across
the various dead branches; on the contrary, the position of
the block should not influence the choice of the attack when
targeting a RNN as SAFE. For all the considered models, the
block where our attack inserts the majority of the instructions
for each adversarial example is the one closest to beginning
of the function. However, while this is evident for GMN
and SAFE (where the first block contains most of the in-
serted instruction in 313 and 205 of the considered examples
respectively), in Gemini the inserted instructions are more
uniformly distributed across the various dead branches. We
report the complete distribution in Figure 14. To further vali-
date these results, we calculated the entropy of the generated
adversarial examples, resulting in values of 2.94 for Gemini,
2.77 for GMN, and 2.68 for SAFE. Higher entropy suggests
a more uniform distribution of inserted instructions across
dead branches, while lower values indicate concentration in
specific blocks. These entropy values reinforce our previous
conclusions. We highlight that these results are partially co-
herent with our initial hypothesis; indeed, the first block is
the closest to the prologue of the function, which plays a

18 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

0 50 100 150 200
initial instrs

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 S
im

ila
rit

y

Gemini

0 50 100 150 200
initial instrs

GMN

0 50 100 150 200
initial instrs

SAFE

uniform adv examples

FIGURE 13. Correlation between initial number of instructions of the function f1 and the similarity between the generated adversarial example fadv and
the target function f2. The considered adversarial examples are generated in the targeted scenario, using our Spatial Greedy approach (ε = 0.1, r = 0.75,
and |CAND| = 400) in setting C4. We also reported an equal number of samples randomly drawn from a uniform distribution.

key role for both SAFE and GMN. Indeed, as mentioned
in [44], SAFE primarily targets function prologues, which
explains why our attack inserts most instructions into the first
block, as it is closest to the function prologue; For GMN,
since prologue instructions typically follow specific compiler
patterns, the nodes containing these instructions are likely to
match, prompting Spatial Greedy to insert most instructions
into the dead branches closest to the prologue.

The smallM-size results in the untargeted scenario prevent
us to obtain meaningful results when running these analyses
in this context, so we decided to not report the obtained
results.

For thewhite-box attack, we believe that the different levels
of robustness among the considered models are mainly due
to their feature mapping processes. As mentioned in Sec-
tion X-D, we evaluated a variant of the GCAM attack solely
in the feature space, removing all constraints necessary for
producing adversarial examples valid in the problem space.
For both Gemini and GMN, we removed the non-negativity
constraint of coefficients, and for SAFE, we eliminated the
rounding to real instruction embeddings constraint. In the
C4 targeted scenario, the unconstrained version of GCAM
increases the A-rate of the standard GCAM on Gemini from
31.60% to 96%, on GMN from 35.33% to 99.81%, and
on SAFE from 21.76% to 92.90%. This demonstrates that
the performance of our attack is primarily influenced by
the feature mapping method rather than the specific model
architectures. The results on the untargeted scenario confirm
this hypothesis, as the unbounded GCAM reaches an A-rate
near 100% for both GMN and SAFE, while a value of 97.01%
against Gemini.

Take away: When considering the black-box sce-
nario, the particular architecture seems to influence the
positionwhere the instructions are inserted. In general,
the particular feature mapping process adopted by the
models seems playing a crucial role in the choice of
the instructions.
In the white-box scenario, the feature mapping pro-
cesses adopted by the models prevent in reaching op-

timal A-rate results.

XI. MIRAI CASE STUDY
We complement our evaluation with a case study examining
our attacks in the context of disguising functions from mal-
ware.
We consider the code base from a famous leak of the Mirai

malware, compiling it gcc 9.2.1 with -O0 optimization level
on Ubuntu 20.04. After filtering out all functions with less
than six instructions, we obtain a set of 63 functions.We build
distinct datasets for the targeted and untargeted case. For the
former, we pair malicious Mirai functions with benign ones
from the Targ dataset from the main evaluation. For the latter,
each of the 63 functions is paired with itself.
Figure 15 reports on our targeted attacks, comparing

Greedy, Spatial Greedy, and the white-box GCAM for the
metrics of A-rate, A-sim and N-inc. For brevity, we focus on
the performant C4 configuration from the main evaluation.
For the A-rate, when attacking GMN and SAFE, Spatial

Greedy has an edge on both Greedy and GCAM, with the
latter performing markedly worse than the two black-box
ones. With Gemini, Spatial Greedy and Greedy perform sim-
ilarly, with both resulting below GCAM. This behaviour is
consistent with the main evaluation results (cf. Figure 12).
In more detail, with GMN, the average increase of A-rate

for Spatial Greedy over Greedy is 3.73 (max. of 6.27 at τt =
0.74, min. of 2.27 at τt = 0.88). With SAFE, this increase is
3.81 (max. of 6.35 at τt = 0.74; min. of zero at τt = 0.8).
With Gemini, GCAM is the best attack with an average 7.94
increase over Spatial Greedy (max. of 9.52% at τt = 0.74;
min. of 6.35% at τt = 0.88). SAFE remains the easiest model
to attack also on this dataset.
Regarding A-sim and N-inc, Spatial Greedy and Greedy

perform similarly on GMN and SAFE, whereas on Gemini
Spatial Greedy is slightly worse than Greedy for A-sim at
lower thresholds. The relative performance of GCAM vs. the
black-box attacks resembles the trends discussed in the main
evaluation (cf. Figure 12).
Figure 16 reports on the experiments we conducted for the

untargeted scenario. We note that Spatial Greedy outperforms

VOLUME 11, 2023 19

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

5 10 15 20
Block with more instrs

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Gemini

5 10 15 20
Block with more instrs

GMN

5 10 15 20
Block with more instrs

SAFE

FIGURE 14. Distribution of the blocks where, for each adversarial example (successful or not), our Spatial Greedy attack inserts most of the instructions.
The considered adversarial examples are generated in the targeted scenario, using our Spatial Greedy approach (ε = 0.1, r = 0.75, and |CAND| = 400) in
setting C4.

0%

20%

40%

60%

80%

A-
ra

te

Gemini GMN SAFE

0.85

0.90

0.95

A-
sim

0.75 0.80 0.85
T

0.40

0.60

0.80

N-
in

c

0.75 0.80 0.85
T

0.75 0.80 0.85
T

Greedy Spatial Greedy GCAM

FIGURE 15. Experiments on the three models subject of black-box and
white-box attackers in the targeted scenario, on the Mirai dataset for a
different success threshold τt ∈ (0.74, 0.88) in setting C4. In case of
black-box attacker, we test the Spatial Greedy approach against the
target models with ε = 0.1, r = 0.75, |CAND| = 400. In case of white-box
attacker, we test GCAM attack with 20k iterations against GEMINI, with 1k
iterations against GMN, and with 1k iterations against SAFE.

the other attacks on SAFE (with the exception of GCAM
when τu =0.46) and performs analogously to them on the
other two models. Compared to the main evaluation results,
targeted attacks haveworse performance than untargeted ones
also on this dataset. Moreover, successful untargeted attacks
continue to require fewer instructions: in particular, across
all models, a successful black-box targeted attack needs on
average 42.63 instructions, whereas the untargeted one adds
on average 5.27 instructions.

0.50 0.55 0.60
U

0%

20%

40%

60%

80%

100%

A-
ra

te

Gemini

0.50 0.55 0.60
U

GMN

0.50 0.55 0.60
U

SAFE

Greedy Spatial Greedy GCAM

FIGURE 16. Resilience of the three models to black-box and white-box
attackers in the untargeted scenario, on the Mirai dataset for a different
success threshold τu ∈ [0.46, 0.62], considering the setting C4. In case of
black-box attacker, we test the Spatial Greedy approach against the
target models with ε = 0.1, r = 0.75, |CAND| = 400. In case of white-box
attacker, we test GCAM attack with 20k iterations against GEMINI, with 1k
iterations against GMN, and with 1k iterations against SAFE.

XII. PRACTICAL IMPACTS AND POSSIBLE
COUNTERMEASURES
In this section we discuss the practical impacts of our paper
and possible countermeasures.

A. PRACTICAL IMPACTS
The findings in Section X-B reveal that the evaluated binary
similarity systems are susceptible to both targeted and un-
targeted attacks, though their resilience differs. These sys-
tems show higher robustness against targeted attacks, with an
average A-rate of 49.43%, whereas the average A-rate for
untargeted attacks is 79.44%. From a practical perspective,
as detailed in Section I we can consider the three main uses
cases of binary similarity systems: vulnerability detection,
plagiarism detection, and malware detection. The results in
the untargeted scenario imply that when having an attacker
that is trying to substitute a function with an older, vulner-
able version or make a plagiarized function dissimilar to
the original one, then they succeed in nearly 80% of cases.
This suggests that current binary similarity models are unfit
for tasks such as vulnerability detection or authorship iden-
tification when used in a context that could be subject to
adversarial attacks (as example, but not limited to, when used
in security sensitive scenarios). To remark on this our results
in Section XI practically show that, when an attacker creates

20 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

a new variant of a malicious function without targeting any
specific benign function, then the models fail in recognising
it as similar to any known malicious sample in nearly 78%
of the cases. In contrast, the considered models show greater
resistance when the attacker is trying to create a variant of
its input matching a specific target function. This implies
that the considered models are more resistant when facing an
attacker trying to make a malicious function closely resemble
a specific whitelisted function rather than when the attacker
is hiding the malevolent function. However, it is important to
note that even in this scenario, as reported in Section XI, an
attacker can bypass the binary similarity detection system in
more than half of the cases.

B. COUNTERMESURES

Given these results, even though our primary focus has been
on the attack side, it is important to investigate potential
defensive strategies.

A typical approach consists of using a classifier as detector
to distinguish between clean examples and adversarial ones.
In our context, one could use an anomaly detection model
to check whether the input function’s code follows common
patterns of compiler-generated code or not, using models for
checking compiler provenance [45], [46].

Adversarial training [13], [47] is the standard solution
for increasing the robustness of an already trained model;
however, while it could improve the robustness against our
methodologies, there is no guarantee that the retrainedmodels
would be robust against zero-day attacks. To overcome these
limitations, techniques based on randomized defenses [48]
could be considered. In particular [48] proposes a method-
ology to increase the robustness of DNN classifiers against
adversarial examples by introducing random noise inside
the input representation during both training and inference.
While originally designed for the computer vision scenario,
this method has been adapted to the malware classification
domain, by randomly substituting [49] and deleting [50] bytes
from the input sample. However, the applicability of these
approaches in the binary similarity domain has not been
studied yet and must focus on manipulating directly assembly
instructions or CFG nodes.

A more promising approach consists of analyzing only a
subset of the instructions from the input functions; the ratio-
nale is that this could thwart the attack by partially destroying
the pattern of instructions introduced by the adversary. Sim-
ilarly to [51], one could learn the function representation by
focusing only on some random portions of the input. A more
refined approach could consist of filtering out instructions
using techniques such as data-flow analysis and micro-trace
execution, to concentrate solely on the ones with the highest
semantic importance. However, one has to keep in mind that
refined analyses at the pre-processing stage could introduce
significant delays that would partially nullify the speed ad-
vantages of using DNNs solutions over symbolic execution
ones.

Finally, one could use an ensemble of all the target models
combined with a majority voting approach to determine the
final similarity. As discussed in the evaluation, the various
attacked models respond differently to our attacks. This sug-
gests that an ensemble model could be a feasible defense.

XIII. LIMITATIONS AND FUTURE WORKS
In this paper, we have seen how adding dead code is a natural
and effective way to realize appreciable perturbations for a
selection of heterogeneous binary similarity systems.
In Section IV-C, we acknowledged how, in the face of

defenders that pre-process code with static analysis, our im-
plementation would be limited from having the inserted dead
blocks guarded by non-obfuscated branch predicates. Fur-
thermore, we highlight that all the approaches we propose
consist of inserting into dead branches sequences of instruc-
tions that do not present any data-dependency, which make
them easier to detect.
Our experiments suggest that, depending on the character-

istics of a given model and pair of functions, the success of
an attack may be affected by factors like the initial difference
in code size and CFG topology, among others. In this respect,
it could be interesting to explore how to alternate our dead-
branch addition perturbation, for example, with the insertion
of dead fragments within existing blocks.
We believe both limitations could be addressed in future

work with implementation effort, whereas the main goal of
this paper was to show that adversarial attacks against binary
similarity systems are a concrete possibility. To enhance our
attacks, we could explore more complex patching imple-
mentation strategies based on binary rewriting or a modi-
fied compiler back-end. Such studies may then include also
other performant similarity systems, such as Asm2Vec [8] or
jTrans [52].

XIV. CONCLUSIONS
We presented the first study on the resilience of code models
for binary similarity to black-box and white-box adversarial
attacks, covering targeted and untargeted scenarios. Our tests
highlight that current state-of-the-art solutions in the field
(Gemini, GMN, and SAFE) are not robust to adversarial
attacks crafted for misleading binary similarity models. Fur-
thermore, their resilience against untargeted attacks appears
significantly lower in our tests. Our black-box Spatial Greedy
technique also shows that an instruction-selection strategy
guided by a dynamic exploration of the entire ISA is more
effective than using a fixed set of instructions. We hope to
encourage follow-up studies by the community to improve
the robustness and performance of these systems.

REFERENCES
[1] T. Dullien and R. Rolles, ‘‘Graph-based comparison of executable objects

(English version),’’ in Proceedings of the Symposium sur la sécurité des
technologies de l’information et des communications (SSTIC ’05), vol. 5,
no. 1, 2005, p. 3.

[2] W.M. Khoo, A. Mycroft, and R. Anderson, ‘‘Rendezvous: A search engine
for binary code,’’ inProceedings of the 10thWorkingConference onMining
Software Repositories (MSR ’13), 2013, pp. 329–338.

VOLUME 11, 2023 21

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

[3] S. Alrabaee, P. Shirani, L. Wang, and M. Debbabi, ‘‘Sigma: A semantic
integrated graph matching approach for identifying reused functions in
binary code,’’ Digital Investigation, vol. 12, pp. S61–S71, 2015.

[4] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
‘‘Function Representations for Binary Similarity,’’ IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 4, pp. 2259–2273, 2022.

[5] Y. David, N. Partush, and E. Yahav, ‘‘Statistical similarity of binaries,’’
in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16), 2016, pp. 266–280.

[6] ——, ‘‘Similarity of binaries through re-optimization,’’ in Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’17), 2017, pp. 79–94.

[7] M. Egele, M. Woo, P. Chapman, and D. Brumley, ‘‘Blanket execution:
Dynamic similarity testing for program binaries and components,’’ in
Proceedings of the 23rd USENIX Security Symposium (SEC ’14), 2014,
pp. 303–317.

[8] S.H.H. Ding, B.C.M. Fung, and P. Charland, ‘‘Asm2Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proceedings of the 40th IEEE Symposium
on Security and Privacy (SP ’19), 2019, pp. 472–489.

[9] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proceedings of the 24th ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17), 2017, pp. 363–376.

[10] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, ‘‘Leveraging
semantic signatures for bug search in binary programs,’’ in Proceedings of
the 30th Annual Computer Security Applications Conference (ACSAC ’14),
2014, pp. 406–415.

[11] X. Yuan, P. He, Q. Zhu, and X. Li, ‘‘Adversarial examples: Attacks and
defenses for deep learning,’’ IEEE Transactions on Neural Networks and
Learning Systems, vol. 30, no. 9, pp. 2805–2824, 2019.

[12] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ arXiv preprint
arXiv:1312.6199, 2013.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ arXiv preprint arXiv:1412.6572, 2014.

[14] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ in Proceedings of the 38th IEEE Symposium on Security and
Privacy (SP ’17), 2017, pp. 39–57.

[15] J. Li, S. Qu, X. Li, J. Szurley, J. Z. Kolter, and F. Metze, ‘‘Adversarial Mu-
sic: Real world Audio Adversary against Wake-word Detection System,’’
in Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems (NeurIPS ’19), 2019, pp. 11 908–11 918.

[16] R. Jia and P. Liang, ‘‘Adversarial Examples for Evaluating Reading Com-
prehension Systems,’’ in Proceedings of the 22nd Conference on Empirical
Methods in Natural Language Processing (EMNLP ’17), 2017, pp. 2021–
2031.

[17] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, ‘‘Intriguing
properties of adversarial ml attacks in the problem space,’’ in Proceeedings
of the 41st IEEE Symposium on Security and Privacy (SP ’20), 2020, pp.
1332–1349.

[18] B. Devore-McDonald and E. D. Berger, ‘‘Mossad: defeating software
plagiarism detection,’’ in Proceedings of the ACM on Programming Lan-
guages (OOPSLA ’20), vol. 4, 2020, pp. 1–28.

[19] A. Hazimeh, A. Herrera, and M. Payer, ‘‘Magma: A ground-truth fuzzing
benchmark,’’ Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 4, no. 3, pp. 1–29, 2020.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
Representations ofWords and Phrases and their Compositionality,’’ in Pro-
ceedings of the 27th Annual Conference on Neural Information Processing
Systems (NeurIPS ’13), 2013, pp. 3111–3119.

[21] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, ‘‘Towards
deep learning models resistant to adversarial attacks,’’ arXiv preprint
arXiv:1706.06083, 2017.

[22] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, ‘‘Graph matching
networks for learning the similarity of graph structured objects,’’ in Pro-
ceedings of the 36th International Conference onMachine Learning (ICML
’19), 2019, pp. 3835–3845.

[23] A.Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio,M.Mansouri,
and D. Balzarotti, ‘‘HowMachine Learning Is Solving the Binary Function
Similarity Problem,’’ in Proceedings of the 31st USENIX Security Sympo-
sium (SEC ’22), 2022, pp. 2099–2116.

[24] N. Mrkšić, D. Ó Séaghdha, B. Thomson, M. Gašić, L. M. Rojas-Barahona,
P.-H. Su, D. Vandyke, T.-H. Wen, and S. Young, ‘‘Counter-fitting Word

Vectors to Linguistic Constraints,’’ in Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT ’16), 2016, pp. 142–148.

[25] S. Ren, Y. Deng, K. He, and W. Che, ‘‘Generating Natural Language
Adversarial Examples through Probability Weighted Word Saliency,’’ in
Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’19), 2019, pp. 1085–1097.

[26] D. Li, Y. Zhang, H. Peng, L. Chen, C. Brockett, M.-T. Sun, and B. Dolan,
‘‘Contextualized Perturbation for Textual Adversarial Attack,’’ in Proceed-
ings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-
HLT ’21), 2021, pp. 5053–5069.

[27] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu, ‘‘BERT-ATTACK: adversarial
attack against BERT using BERT,’’ in Proceedings of the 25th Conference
on Empirical Methods in Natural Language Processing (EMNLP ’20),
2020, pp. 6193–6202.

[28] N. Yefet, U. Alon, and E. Yahav, ‘‘Adversarial examples for models of
code,’’ in Proceedings of the ACM on Programming Languages (OOPSLA
’20), vol. 4, 2020, pp. 1–30.

[29] W. Zhang, S. Guo, H. Zhang, Y. Sui, Y. Xue, and Y. Xu, ‘‘Challeng-
ing machine learning-based clone detectors via semantic-preserving code
transformations,’’ IEEE Transactions on Software Engineering, pp. 1–18,
2023.

[30] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, ‘‘Adversarial malware binaries: Evading deep learning for
malware detection in executables,’’ in Proceedings of the 26th European
signal processing conference (EUSIPCO ’18), 2018, pp. 533–537.

[31] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet,
‘‘Adversarial examples on discrete sequences for beating whole-binary
malware detection,’’ arXiv preprint arXiv:1802.04528, pp. 490–510, 2018.

[32] K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, ‘‘Malware
Makeover: Breaking ML-based Static Analysis by Modifying Executable
Bytes,’’ in Proceedings of the 16th ACMAsia Conference on Computer and
Communications Security (AsiaCCS ’21), 2021, pp. 744–758.

[33] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, ‘‘MAB-
Malware: A Reinforcement Learning Framework for Blackbox Generation
of Adversarial Malware,’’ in Proceedings of the 17th ACMAsia Conference
on Computer and Communications Security (AsiaCCS ’22), 2022, pp. 990–
1003.

[34] L. Jia, B. Tang, C. Wu, Z. Wang, Z. Jiang, Y. Lai, Y. Kang,
N. Liu, and J. Zhang, ‘‘Funcfooler: A practical black-box attack against
learning-based binary code similarity detection methods,’’ arXiv preprint
arXiv:2208.14191, 2022.

[35] B. Biggio and F. Roli, ‘‘Wild patterns: Ten years after the rise of adversarial
machine learning,’’ in Pattern Recognition, vol. 84, 2018, pp. 317–331.

[36] P. Borrello, D. C. D’Elia, L. Querzoni, and C. Giuffrida, ‘‘Constantine:
Automatic Side-Channel ResistanceUsing Efficient Control andData Flow
Linearization,’’ in Proceedings of the 28th ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), 2021, pp. 715–733.

[37] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, ‘‘Stratified synthesis:
automatically learning the x86-64 instruction set,’’ in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16), 2016, pp. 237–250.

[38] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, ‘‘Neural nets can learn func-
tion type signatures from binaries,’’ in Proceedings of the 26th USENIX
Security Symposium (SEC ’17), 2017, pp. 99–116.

[39] H. Dai, B. Dai, and L. Song, ‘‘Discriminative Embeddings of Latent Vari-
able Models for Structured Data,’’ in Proceedings of the 33rd International
Conference on Machine Learning (ICML ’16), vol. 48, 2016, pp. 2702–
2711.

[40] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global Vectors for
WordRepresentation,’’ inProceedings of the 19th Conference on Empirical
Methods in Natural Language Processing (EMNLP ’14), 2014, pp. 1532–
1543.

[41] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching Word
Vectors with Subword Information,’’ Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2016.

[42] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger, ‘‘Sim-
ple black-box adversarial attacks,’’ inProceedings of the 36th International
Conference on Machine Learning (ICML), vol. 97. PMLR, 2019, pp.
2484–2493.

[43] J. Chen, M. I. Jordan, and M. J. Wainwright, ‘‘HopSkipJumpAttack: A
query-efficient decision-based attack,’’ in Proceeedings of the 41st IEEE

22 VOLUME 11, 2023

Capozzi et al.: Adversarial Attacks against Binary Similarity Systems

Symposium on Security and Privacy (SP ’20). IEEE, 2020, pp. 1277–
1294.

[44] W. K. Wong, H. Wang, Z. Li, and S. Wang, ‘‘Binaug: Enhancing binary
similarity analysis with low-cost input repairing,’’ in Proceedings of the
46th IEEE/ACM International Conference on Software Engineering (ICSE
’24). ACM, 2024, pp. 7:1–7:13.

[45] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni, ‘‘In-
vestigating graph embedding neural networks with unsupervised features
extraction for binary analysis,’’ in Proceedings of the 2nd Workshop on
Binary Analysis Research (BAR), 2019, pp. 1–11.

[46] X. He, S. Wang, Y. Xing, P. Feng, H. Wang, Q. Li, S. Chen, and K. Sun,
‘‘Binprov: Binary code provenance identification without disassembly,’’
in Proceedings of the 25th ACM International Symposium on Research in
Attacks, Intrusions and Defenses (RAID ’22), 2022, pp. 350–363.

[47] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif, ‘‘Adver-
sarial training for raw-binary malware classifiers,’’ in Proceedings of the
32nd USENIX Security Symposium (SEC ’23), 2023, pp. 1163–1180.

[48] J. Cohen, E. Rosenfeld, and J. Z. Kolter, ‘‘Certified adversarial robustness
via randomized smoothing,’’ in Proceedings of the 36th International
Conference onMachine Learning, ICML, vol. 97. PMLR, 2019, pp. 1310–
1320.

[49] D. Gibert, G. Zizzo, and Q. Le, ‘‘Towards a practical defense against ad-
versarial attacks on deep learning-based malware detectors via randomized
smoothing,’’ arXiv preprint arXiv:2308.08906, 2023.

[50] Z. Huang, N. G. Marchant, K. Lucas, L. Bauer, O. Ohrimenko, and B. I. P.
Rubinstein, ‘‘Rs-del: Edit distance robustness certificates for sequence
classifiers via randomized deletion,’’ in Proceedings of the 36th Annual
Conference on Neural Information Processing Systems (NeurIPS ’23),
2023.

[51] D. Gibert, L. Demetrio, G. Zizzo, Q. Le, J. Planes, and B. Biggio, ‘‘Cer-
tified adversarial robustness of machine learning-based malware detectors
via (de) randomized smoothing,’’ arXiv preprint arXiv:2405.00392, 2024.

[52] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and C. Zhang,
‘‘JTrans: Jump-aware transformer for binary code similarity detection,’’
in Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’22), 2022, pp. 1–13.

GIANLUCA CAPOZZI got a master degree in En-
gineering in Computer Science in 2021, from the
Sapienza, University of Rome, Italy. He is cur-
rently a Ph.D. student at Sapienza, University of
Rome, Italy. His main research topic is adversarial
machine learning against neural network models
for binary analysis.

DANIELE CONO D’ELIA obtained his Ph.D. in
Engineering in Computer Science in 2016 from
Sapienza University of Rome. He is currently a
tenure-track Assistant Professor at Sapienza. His
research activities span several fields across soft-
ware and systems security, with contributions in
the analysis of adversarial code and in the design
of program analyses and transformations to make
software more secure.

GIUSEPPE ANTONIO DI LUNA He is an Asso-
ciate Professor at Sapienza University of Rome,
Italy. After his Ph.D. he did a postdoc at the Uni-
versity of Ottawa, Canada, working on fault tol-
erant distributed algorithms, distributed robotics,
and algorithm design for programmable particles.
In 2018 he started a postdoc at the Aix-Marseille
University, France, where he worked on dynamic
graphs. Currently he is performing research on
applying NLP techniques to the binary analysis

domain.

LEONARDO QUERZONI received the Ph.D. de-
gree with a thesis on efficient data routing algo-
rithms for publish/subscribe middleware systems,
in 2007. He is a Full Professor at Sapienza Uni-
versity of Rome, Italy. His research interests range
from cyber security to distributed systems and fo-
cus, in particular, on topics that include binary
similarity, distributed stream processing, depend-
ability, and security in distributed systems. He au-
thored more than 80 paper published in interna-

tional scientific journals, and conferences. In 2017 he got the Test of Time
Award from the ACM International Conference on Distributed Event-Based
Systems for the paper “TERA: topic-based event routing for peer-to-peer
architectures”, published, in 2007.

VOLUME 11, 2023 23

	Introduction
	Contributions

	Related Works
	Attacks to Image Classifiers and NLP Models
	Attacks against Models for Source Code Analysis
	Attacks against Models for Binary Code Analysis
	Attacks against malware detectors
	Attacks against binary similarity models

	Background
	Adversarial Knowledge
	Inverse Feature Mapping Problem
	Semantics-Preserving Perturbations of Problem-Space Objects

	Threat Model and Problem Definition
	Threat Model
	Problem Definition
	Perturbation Selection

	Black-Box attack: Solution Overview
	Greedy
	Limitations of the Complete Enumeration Strategy

	Spatial Greedy
	Instruction Embedding Space
	Dynamic Selection of the Set of Candidates

	White-Box attack: Solution Overview
	Gradient-guided Code Addition Method

	Comparison between the attacks
	Target systems
	Gemini
	Greedy Attack
	GCAM Attack

	GMN
	Greedy Attack
	GCAM Attack

	SAFE
	Greedy Attack
	GCAM Attack

	Datasets and Implementation
	Attack Dataset
	Dataset used for Spatial Greedy
	Implementation details

	Evaluation
	Setup
	Complete Attack Results
	Black-box Targeted Attack
	Black-box Untargeted Attack
	White-box Targeted Attack
	White-box Untargeted Attack
	Greedy vs. Spatial Greedy

	RQ1: Targeted vs. Untargeted Attacks
	RQ2: Black-box vs. White-box Attacks
	RQ3: Impact of Features Extraction and Architectures on Attacks

	Mirai Case Study
	Practical Impacts and Possible Countermeasures
	Practical Impacts
	Countermesures

	Limitations and Future Works
	Conclusions
	REFERENCES
	Gianluca Capozzi
	Daniele Cono D'Elia
	Giuseppe Antonio Di Luna
	Leonardo Querzoni

